Financial Boundaries, Gaps and Disconnects
or Why Systems Fall Short When it Comes to Sustainment - A Systemic Problem -

<table>
<thead>
<tr>
<th>Phase</th>
<th>Focus</th>
<th>Transition</th>
<th>Accountability/Responsibility Gaps</th>
<th>End Goal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept / Pre-Award Phase</td>
<td>Acquisition Cost</td>
<td>Transitions (Problem Areas)</td>
<td></td>
<td>Minimize Lifecycle Costs while efficiently meeting all operational, maintenance & logistics requirements</td>
</tr>
<tr>
<td>Design / Development Phase</td>
<td>Acquisition Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturing / Production Phase</td>
<td>Unit Prod. Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sustainment Phase</td>
<td>Sustainment Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Team P**: Typically Company Funded (though sometimes CRAD or Down-Select Funding is provided)
- **Team D**: Little or no incentive to ensure next phase / Team is successful, efficient, cost effective or sustainable
 - Accountability & Responsibility End the End of Each Phase – Team members move on to other programs
 - Diagnostic Design has perhaps the largest impact to the next two phases....but what's the consequence of not doing a good job?
 - Design / Development Contract Funded
- **Team M**: No vested interest; no incentive, no punishment, etc.... From one phase to the next
 - Manufacturing / Production Contract Funded
- **Team S**: Different Teams throughout the Lifecycle
 - Different Requirements Not directly related to the End Goal
 - Different Funding Profiles (buckets) and Priorities
 - Different Program Managers
 - * No Accountability Going Forward
 - * Typically Very Little Continuity
 - Customer Funded
 - Though some depot funding may come back to contractor

Budgetary Boundary

- Typically acquired and budgeted at the beginning of the program
Typical Present Day Trends

Potential With Robust Diagnostics Designs

Investment into Early Maintenance Concept Simulations, Diagnostic Design, Health Management Requirements, Functional Partitioning, etc.

Savings in Diagnostic Troubleshooting Sequencing, Fault Tree Analysis, TRD & TPS Development, System Test, System Integration & Factory Checkout

Projected Lifecycle Cost Savings (total of green area)

Early Investment = Optimized Designs = Maximized Reuse = Lifecycle Savings

Savings During Operation & Maintenance Sustainment Phase => Minimized RTOKs, CNDs, MTTR, Skill Levels, etc. Optimized Availability, Health Management, Diagnostic Troubleshooting, Sparing Levels, etc.
DSI ISDD Tool Applications By Phase to Optimize Total Lifecycle Benefits

Concept / Pre-Award Phase
- **Acquisition Cost**
 - Investment into Early Maintenance Concept Simulations, Diagnostic Design, Health Management Requirements, Functional Partitioning, etc.

Design / Development Phase
- **Acquisition Cost**
 - Savings in Diagnostic Troubleshooting Sequencing, Fault Tree Analysis, TRD & TPS Development, System Test, System Integration & Factory Checkout

Manufacturing / Production Phase
- **Unit Prod. Cost**
 - Typical Present Day Trends
 - Potential With Robust Diagnostics Designs

Sustainment Phase
- **Operational & Maintenance Support**
 - Projected Lifecycle Cost Savings (total of green area)
 - Savings During Operation & Maintenance Sustainment Phase => Minimized RTOKs, CNDs, MTTR, Skill Levels, etc.
 - Optimized Availability, Health Management, Diagnostic Troubleshooting, Sparing Levels, etc.