
PARTITIONING LARGE DIAGNOSTIC PROBLEMS

William R. Simpson and John W. Sheppard
ARINC Research Corporation

2551 Riva Road
Annapolis, Maryland 21401

ABSTRACT

An increasing number of full system testability
analyses are being handled by information and
dependency modeling. Although top-level design review
analyses have not presented problems, there is concern
that detailed models of large systems may exceed
computer and computational capabilities of the most
sophisticated modeling approach. It is reasonable to
assume that the communications portion of Space
Station Freedom or the avionics on the Advanced
Tactical Fighter (ATF) may exceed from 10,000 to
15,000 elements in diagnostic models.

Information and dependency modeling approaches
are based on a set partitioning algorithm that has 0(n3)
complexity, thus requiring a factor of 8 or more
computational power for each doubling of the model
size. In large, complex systems such as those
mentioned above, we may not be able to perform static
analysis, much less interactive diagnosis, without
breaking the problem into smaller pieces. The difficulty
is dividing the system while still maintaining the desired
subsystem interactions.

In this paper we describe a basic approach to
modeling large diagnostic problems, such as Space
Station Freedom or the ATF avionics. For this approach
we present three techniques for developing submodels
to create an interacting network of submodels of
reasonable size. Specifically, we discuss:

• Partitioning by articulation points

• Partitioning by logical cut points

• Partitioning at arbitrary points

These techniques have been developed as part of a

total integrated diagnostics package that includes
testability analysis; design for testability; and a full
range of diagnostic capabilities, including built-in test,
embedded diagnostics, automatic test, and portable
maintenance aids. We address partitioning models
produced using the modeling approach as
implemented in the System Testability and
Maintenance Program (STAMP®) and the Portable
Interactive Troubleshooter (POINTERTM). These
techniques, however, generally apply to any of the
current formulations for complex systems diagnoses.

INTRODUCTION

The 1980s saw increasing emphasis on designing
systems for field operations. Although manifested in many
contexts, such as design for testability, concurrent
engineering, and integrated diagnostics, emphasis is
measurably shifting in the approach to the maintenance of
complex systems from designing for performance to
designing for performance and maintainability. Customers
arc demanding to know what the field maintainability of
systems will be, almost before they ask about system
performance. It is clear that the old method of doing
business is giving way to a more structured approach. We
can no longer afford the luxury of designing to
performance specifications and then supplying
maintenance and diagnostic procedures after other
objectives have been achieved. We have seen that the
result of this nonintegrated approach to design has led to
retest OK (RTOK) rates in excess of 40% with field no
fault found (NFF) rates at 50% and false alarm rates
(FARs) often exceeding valid detections [1,2]. Detailed
system specification attempted to limit the downstream
liability resulting from poor maintainability, but field results
were often years away from the ad hoc measures taken
by designers. As a result, the Department of Defense
(DoD) instituted a standard to require detailed analysis of
testability issues during design [3].

Many companies developed tools to help handle the
analysis task. ARINC developed two tools to assist in
developing testable systems and in streamlining the
maintenance process—STAMP and POINTER. STAMP is
a model-based reasoning system that is used to conduct
testability analysis and develop fault-isolation strategies to
improve system maintenance. POINTER, which was
derived from STAMP, uses the system model generated
by STAMP for its knowledge base. With the system
model, POINTER interactively presents test material and
guides the maintenance process through diagnosis and
repair. POINTER may be applied to manual,
semiautomatic, and automatic fault-diagnosis problems;
advanced capabilities include learning and reasoning
under uncertainty [4,5]. Many other analysis systems,
based on the dependency model approach, have been
developed as well [6-8]. These types of tools have been in
use now for about 10 years and, in the case of STAMP
and POINTER, have garnered significant and even
spectacular results compared with past approaches [9,10].

329
CH2941-3/91/0000-0329 $1.00 ©1991 IEEE

BASIC PROBLEM FORMULATION

With STAMP, the basic formulation represents the
topology of the system being analyzed in a graph
representation, where the tests and components are the
vertices of the graph and the dependency relationships
are the edges of the graph. Specifically, the
representation is a bit matrix that is an adjacency matrix
for test dependencies [11].

Figure 1 shows the basic matrix formulation. The bit
matrix representation is compact and requires only 0(n2)
bits for storage, where n is the number of elements in the
matrix, corresponding to the sum of the testable elements
and the conclusion elements plus 1 (for the RTOK
conclusion). Testable inputs comprise two elements
under this formulation: one for the test element
represented, and one for the conclusion element
represented. The shaded portion of the matrix is not used
because we do not consider component-to-test
dependencies or component-to-component
dependencies.

requires O(n3) time. The result of using this approach is
a good approximation of an optimization problem that is
known to be NP-complete [12]. On the other hand,
inferences are drawn in bit-parallel fashion and are
significantly faster (i.e., 0(n)) than the logical chaining
required by an expert rule representation of the system.
Thus, portable maintenance aids for moderately
complex systems can provide a full range of options
and still respond to user input because of today's faster
microprocessor chips. In fact, because models can now
be considered that will require from 10,000 to 15,000
elements, it is the compactness of this algorithm that
led us to investigate the application to diagnosis of a
full system at a level of detail that would be difficult for
the normal rule. based expert system.

Although the representation of the system is
extremely compact and efficient, the very size of the
model may become a problem from a computation
standpoint, storage standpoint, or both. Conceptually,
the problem can be partitioned into smaller pieces while
still retaining the desired level of interaction at the full

Test Elements Conclusion Elements

Note: A value of 1 in a column indicates a dependency
relationship. RTOK is always empty.

Figure 1. Basic System Representation in STAMP and POINTER

Although STAMP has evolved to include a number of
logical constructs that cannot be represented in this
format, the basic graph representation is still an integral
part of the calculational burden. In particular, the test-
choice algorithm (which we have simplified for an
interactive calculation) involves the computation of
information entropy values across this matrix and

system level. Ideally, this system-level partitioning is
accomplished with one or more readily observable
indications that then point to the appropriate
submodel. If the submodels are partitioned at points
of no overlap or at least minimum overlap,
computation efficiency is maintained. We call a test
that partitions the model into two nonoverlapping

330

submodels a "clean" cut point. If the submodels are
significantly smaller than the original model, a
substantial reduction in storage requirements results.
Figure 2 shows conceptually the limits of partitioning a
model into two submodels. The partitioning into
submodels can be either well-conditioned (as shown in
Figure 2.a) or ill-conditioned (as shown in Figure 2.b),
the major difference being in the benefit derived by
partitioning. Ill-conditioned partitioning may be
described as partitioning that has only a small impact on
model size requirements. Figure 2.a shows a
substantial reduction in the model size regardless of the
outcome of the test symptom, and Figure 2.b shows a
poor partitioning taking place with the symptom chosen.
Given a set of readily observable indications, we may
be able to accomplish only ill-conditioned partitioning.
But ill-conditioned partitioning points should be avoided
where possible.

b. Ill-Conditioned Submodel Partition

Figure 2. A Representative Partition of a
Larger Model into Two submodels

We have developed three basic techniques for
partitioning the model. The first, articulation-point
partitioning, uses the properties of the graph
representation. The second, logical cut-point
partitioning, takes advantage of the logical properties
of the representation. When dealing with real
systems, it is recognized that graph cut points and
logical cut points may not occur at readily observable
indications, so the third technique, arbitrary

 partitioning, provides a completely arbitrary cut-point
process. The latter is subject to a varying degree of
Submodel overlap.

PARTITIONING BY ARTICULATION POINTS

An articulation point, or cut vertex, is a vertex on a
graph that can be used to cleanly separate the graph into
two subgraphs. The vertices of the graph are the
candidates for the articulation points, which, in our case,
are the tests (see Figure 1). To derive the formulation of
an articulation point, we must first examine graph
connectivity. We define our graph, G, to be a set of
vertices (tests and conclusions) and edges
(dependencies) as illustrated in Figure 1. The vertices, V,
are connected by the edges, E. An undirected graph is a
graph in which the edges may be traversed in either
direction. A directed graph is a graph in which the edges
may be traversed in only one direction. A path is defined
as the set of edges required to go from some vertex (say,
vi) to another vertex (say, vj). If we assume the graph is
undirected, then the graph is connected if and only if at
least one path exists between any pair of vertices. If the
graph is directed, then the graph is "strongly" connected if
and only if at least one path exists between any pair of
vertices. A directed graph may be "weakly" connected if
its undirected form is connected but its directed form is
not strongly connected. Any strongly connected graph is
also weakly connected. One final form of connectivity that
must be examined is biconnectivity. A graph is
biconnected if and only if, for every pair of vertices in the
graph, at least two independent paths exist between the
vertices:

where Pijk is the kth path between i and j. If a graph is not
biconnected, then some pair of vertices, vi and vj, exists
such that a third vertex, vx, is on every path between vi
and vj,. This can be represented by

The common vertex in the graph vx is the articulation
point.

Figure 3 shows a topological representation of a
system that we use here for example purposes. In Figure
3, t is used for the test elements, and c is for conclusions.
Two additional elements are given by int and inu,
representing testable and untestable inputs, respectively.
The testable inputs are modeled as two vertices (test part
and conclusion part). The untestable inputs are modeled
as single vertices. The actual process by which
articulation points are uncovered considers only the test-
to-test subgraph and involves the building of a depth-first
spanning tree, which is an approach to systematically
examining every vertex of a graph [13]. For the system of
Figure 3, the articulation

a. Well-Conditioned Submodel Partition

331

Figure 3. An Example System for Illustration
Purposes

points are identified as t13, t14, t15, t16, t17, int1, and int2,.
Given the articulation points, the system model can be
partitioned along these points to form small submodels.
Once the model is partitioned, two computationally
intense processes are simplified.

First, in analyzing a system, we determine all higher
order dependencies for a test through a process called
closure (see the next section, "Partitioning by Logical Cut
Points"). This algorithm requires 0(n3) time. The time
required for closure can be reduced if we first partition the
model, close each submodel, construct a high-level
model representing the submodel interaction, and close
this high-level model.

Second, as mentioned in "Basic Problem
Formulation," the task of selecting a test to evaluate also
requires 0(n3) time. To choose a test, we proceed in a
top-down fashion in which we can choose from among
the articulation points. This process continues until a
single submodel is isolated; that submodel forms the
basis for further diagnosis. The resulting diagnostic
strategy may be less efficient than considering the entire
model at once, but computation time and storage space
requirements can both be significantly reduced.

PARTITIONING BY LOGICAL CUT POINTS

The articulation-point technique relies heavily on
the graphical properties of the representation. The logical
cut-point technique relies heavily on the logical
properties of the representation [14]. This technique
involves identifying tests that are piece-wise serial. A
serial system is one in which there is a test between
every component and the system is represented by a
single flow path. Figure 4 shows a simple serial
system. In the serial system, each test is a clean cut
point in that it divides the overall problem into two
independent sub problems. The graphical form, when
ordered, is an upper triangular matrix. Each test feeds
all downstream elements and is fed by all upstream
elements. Real systems, of course, seldom exhibit this
serial nature, although significant parts of them may
(see Figure 3). A test is considered to be piece-wise
serial if it exhibits the properties of a test in a serial
system. That is, when the system is ordered, the test
feeds all downstream elements and depends upon all
upstream elements.

One way to identify serial subsystems within a
larger system would be to order the system and
examine each test to see if the piece-wise serial
property exists. This requires the logical chaining of
inferences to check for the existence of relationships
that occur beyond the nearest neighbor. It is sufficient,
however, to examine the higher order relationships to
determine whether an upstream or downstream
relationship exists between the test being

332

Figure 4. A Serial System for Illustration Purposes

considered and every other test. For graphically
represented systems, the higher order relationships may
be obtained through a process called transitive closure
[15]. Transitive closure replaces the chaining of rules
that must be applied to examine the higher order
relationships and is based on the transitivity of logical
implication:

where P, Q, and R are logical premises, and → indicates
implication.

An additional form of closure, logical closure, checks
for the presence of higher order relationships using the
inference metarules of the inference engine being used
[16]. The primary metarules used in STAMP and
POINTER are provided in Table 1. Rules 4 and 5 of that
table provide the basis for logical closure and may
provide additional higher order dependencies due to
secondary implications. In particular, a secondary
implication results as follows: Given two tests, ti and tp, if
we examine the set of conclusions upon which ti
depends, A, and the set of conclusions upon which tj
depends, B, and find that set B is a subset of set A, then
we conclude that ti depends upon tj.

If an upstream or downstream relationship exists
between the test being considered and every other test,
then the test being considered satisfies the piece-wise
serial requirement for at least one ordering of the
system. This ordering can be given as

of these identified cut points. There is no guarantee that
the partitioning techniques described will identify any cut
points, and there is no guarantee that the identified cut
points will be useful in terms of model reduction or will
contain information that can be made available at the
beginning of a diagnostic problem. We may be forced to
choose some arbitrary test (arbitrary to the model
representation, but significant in that it represents a gauge
reading, panel light, or some other easily observable
phenomenon).

Arbitrary partitioning is achieved by actually
exercising the inference engine [17]. The basic inference
metarules used within STAMP and POINTER (Table 1)
can be applied to an arbitrary outcome, and the resultant
submodels can be developed by collecting known
information from the larger model. For example,
partitioning at an arbitrary tx. would involve examining a
good outcome of tX and applying rules 2, 4, and 5 of Table
1. Each of the elements determined by these rules would
be eliminated from the overall model, and the resulting
submodel would be the one to use when a good outcome
of tX is observed. Similarly, we would examine a bad
outcome of tx by applying rules 3, 4, and 5 of Table 1.
Each of the elements determined by these rules would be
eliminated from the overall model, and the resulting
submodel would be the one to use when a bad outcome of
tx is observed. Thus, the two submodels that result from an
evaluation of tx are determined. The resulting submodel
development may not be independent (that is, the two
submodels may contain one or more elements in
common), but they retain the desired model integrity.

 SUMMARY OF TECHNIQUES
where LBPk is the logical cut point, and L indicates a
higher order direct logical relationship between every
other test (either a feed or dependency). For the system
of Figure 3, the logical cut points are identified as t3, t13,
t14, t15, t16 and t17 It is interesting to note at this point that
the two techniques for obtaining clean cut points gave
different, but overlapping, answers.

PARTITIONING AT ARBITRARY POINTS

The techniques examined to this point center on
determining the vertices (tests) around which clean
cuts can be made. That is, the larger model can-be
broken into two independent submodels. Nature or
design may not be kind enough to allow us to use any

We have examined three techniques for approaching

the problem of diagnosis of extremely large systems.
Each of the techniques can be applied recursively; that is,
each of the resulting submodels can again be divided into
submodels. This procedure would potentially allow a
16,000-element model to be broken into two 8,000-
element models, four 4,000-clement models, or eight
2,000-element models. (This latter size model is
comfortably worked with on a regular basis in STAMP and
POINTER.)

Table 2 considers each test in the example system
given in Figure 3 as a cut point. It can be seen that not all
of the clean cut points are uncovered. From Table 2, it
appears that none of the clean cut points occur at an
optimal point. The original matrix of Figure 3 has 46

333

Table 1. STAMP and POINTER Inferencing Metarules*

1 tj untestable tj untestable is the
only inference.

2 tj good Every element upon which

t.j depends is good.

3a tj bad Every element which tj
feeds is bad.

3b tj bad Every conclusion element
which tj does not depend on
is good.

3c tj bad Every element upon which tj

does not depend or feed is
usuallvt not needed.

4 After rules Every unknown element tp

1-3 that depends on all of the
unknown elements is bad.

5 After rules Every unknown element tp

1-3 that depends on only known
good elements is good.

`Inference rules due to asymmetric, conditional, and linked outcome
tests are not shown in table.
tUnless not evaluating the test under condition causes an
additional ambiguity group.

elements, and an optimal cut would put 22 or 23
elements in the largest submatrix. This does occur with
t10, but that test is not a clean cut point. The submodels
for this problem would have to be derived by the arbitrary
partitioning technique.

FUTURE DIRECTIONS

The techniques described in this paper are only a
few of many possible approaches for partitioning
complex diagnostic problems. For example, in addition to
identifying articulation points, it may be possible to
identify a set of minimal vertex cuts, where a vertex cut is
a set of vertices such that removal of all of the vertices
disconnects the graph. If we specify some k ≥ 1, then we
can identify all vertex cuts of size k or less, which
includes the articulation points as vertex cuts of size k =
1. For a given k, the time required to identify the k-vertex
cut is O(n2).

Table 2. Examination of Tests as Cut Points

Test Largest Articulation Logical Cut Clean
Submatrix Point Point Cut

t1 34 No No Yes
 t2 42 No No Yes
t3 38 No Yes Yes
t4 30 No No Yes
t5 35 No No No

 t6 25 No No No
t7 25 No No No
t8 25 No No No
t9 25 No No No
t10 23 No No No
t11 25 No No No
t12. 27 No No No
t13 35 Yes Yes Yes
t14 39 Yes Yes Yes
t15 42 Yes Yes Yes
t16 42 Yes Yes Yes
t17 39 Yes Yes Yes
f18 25 No No No
int1 44 Yes No Yes
int2 44 Yes No Yes

In addition to applying the vertex cut technique, it
is also possible to identify minimum-edge cuts in the
graph, An edge cut is a set of edges such that the
removal of all of the edges disconnects the graph. A
minimal, nonempty edge cut is also called a bond. By
applying a method such as the Ford-Fulkerson
method [18] for identifying maximum flow in a
network, we can find the minimum cut of the network.
Because the method has polynomial time solutions,
the approach is also computationally tractable.
Determining if a graph is k-edge connected for
arbitrary k is known to be NP-complete.

CONCLUSION

The partitioning techniques described allow the
development of responsive diagnostic models of
arbitrarily large size if enough readily observable
information sources are used to start the diagnostic
problem. These techniques are part of an overall
package of techniques used in the diagnostic and
testability information modeling of complex systems.
Tools exist that combine smaller models, trace
dependencies, and port models between machines
and software systems as well as a variety of computer-
aided design (CAD) interface tools.

Rule Condition Action

334

REFERENCES

[1] Labit, M. L., et al., Special Report on Operational

Suitability (OS) Verification Study Focus on
Maintainability, Publication 1751-01-02-2395,
ARINC Research Corporation, Annapolis, Maryland,
February 1981.

[2] Aeronautical Radio, Inc., Avionics Maintenance

Conference Report—San Diego, 1987, Publication
87-087/MOF-34, Annapolis, Maryland, August 1987.

[3] Naval Electronics Systems Command (ELEX-8111),

Testability Program for Electronic Systems and
Equipments, MIL-STD-2165, Washington, D.C.,
January 1985.

[4] Sheppard, J. W., and W. R. Simpson, "Uncertainty

Computations in Model-Based Diagnostics," to
appear in AUTOTESTCON '91 Conference Record,
Anaheim, California, September, 1991.

[5] Sheppard, J. W., "Learning Diagnostic Information

Using a Matrix-Based Approach to Knowledge
Representation," Master of Science Thesis, G. W.
C. Whiting School of Engineering of The Johns
Hopkins University, October 1989.

[6] DePaul, R. A., Jr., "Logic Modeling as a Tool for

Testability," AUTOTESTCON '85 Conference
Record, Uniondale, Long Island, New York, October
1985.

[7] Franco, J. R., "Experiences Gained Using the Navy's

IDSS Weapon System Testability Analyzer,"
AUTOTESTCON '88 Conference Record,
Minneapolis, Minnesota, September 1988.

[8] Cantone, R. A., and P. Caserta, "Evaluating the

Economical Impact of Expert Fault Diagnosis
Systems: The I-CAT Experience," 3rd IEEE
International Symposium on Intelligent Control,
Arlington, Virginia, August 1988.

[9] Simpson, W. R., and J. W. Sheppard, "Experiences

with a Model-Based Approach to the Fault Detection
and Isolation of Complex Systems," Symposium on
Artificial Intelligence Applications in Military
Logistics, Williamsburg, Virginia, March 1990.

[8] Simpson, W. R., "Active Testability Analysis and
Interactive Fault Isolation," AUTOTESTCON '87
Conference Record, San Francisco, California,
November 1987.

[9] Simpson, W. R., and B. A. Kelley, "Multidimensional
Context Representation of Knowledge-Based
Information," 1987 Data Fusion Symposium, Laurel,
Maryland, June 1987.

[10] Hyafil, L., and R. L. Rivest, "Constructing Optimal
Binary Decision Trees is NP-Complete," Information
Processing Letters, Vol. 5, No. 1, May 1976, pp. 15-
17.

[11] Sheppard, J. W., "Notes on Partitioning by
Articulation Points," STAMP Technical Note 346,
ARINC Research Corporation, Annapolis, Maryland,
November 1988.

[12] Simpson, W. R., "Notes on Partitioning by Logical
Break Points," STAMP Technical Note 350, ARINC
Research Corporation, Annapolis, Maryland, July
1989.

[13] Sheppard, J. W., "Notes on Closure," STAMP
Technical Note 340, ARINC Research Corporation,
Annapolis, Maryland, July 1988.

[14] Simpson, W. R., "Notes on Logical Closure," STAMP
Technical Note 340A, ARINC Research Corporation,
Annapolis, Maryland, November, 1988.

[15] Simpson, W. R., "Notes on Direct Matrix Partitioning,"
STAMP Technical Note 352, ARINC Research
Corporation, Annapolis, Maryland, August 1989.

[16] Corman, T. H., C. E. Leiserson, and R. L. Rivest,
Introduction to Algorithms, McGraw-Hill Book
Company, New York, 1990, pp. 587-600.

335

