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ABSTRACT 
 

An increasing number of full system testability 
analyses are being handled by information and 
dependency modeling. Although top-level design review 
analyses have not presented problems, there is concern 
that detailed models of large systems may exceed 
computer and computational capabilities of the most 
sophisticated modeling approach. It is reasonable to 
assume that the communications portion of Space 
Station Freedom or the avionics on the Advanced 
Tactical Fighter (ATF) may exceed from 10,000 to 
15,000 elements in diagnostic models. 
 

Information and dependency modeling approaches 
are based on a set partitioning algorithm that has 0(n3) 
complexity, thus requiring a factor of 8 or more 
computational power for each doubling of the model 
size. In large, complex systems such as those 
mentioned above, we may not be able to perform static 
analysis, much less interactive diagnosis, without 
breaking the problem into smaller pieces. The difficulty 
is dividing the system while still maintaining the desired 
subsystem interactions. 
 

In this paper we describe a basic approach to 
modeling large diagnostic problems, such as Space 
Station Freedom or the ATF avionics. For this approach 
we present three techniques for developing submodels 
to create an interacting network of submodels of 
reasonable size. Specifically, we discuss: 
 

• Partitioning by articulation points 
 

• Partitioning by logical cut points 
 
• Partitioning at arbitrary points 

 
These techniques have been developed as part of a 

total integrated diagnostics package that includes 
testability analysis; design for testability; and a full 
range of diagnostic capabilities, including built-in test, 
embedded diagnostics, automatic test, and portable 
maintenance aids. We address partitioning models 
produced using the modeling approach as 
implemented in the System Testability and 
Maintenance Program (STAMP®) and the Portable 
Interactive Troubleshooter (POINTERTM). These 
techniques, however, generally apply to any of the 
current formulations for complex systems diagnoses. 

INTRODUCTION 
 

The 1980s saw increasing emphasis on designing 
systems for field operations. Although manifested in many 
contexts, such as design for testability, concurrent 
engineering, and integrated diagnostics, emphasis is 
measurably shifting in the approach to the maintenance of 
complex systems from designing for performance to 
designing for performance and maintainability. Customers 
arc demanding to know what the field maintainability of 
systems will be, almost before they ask about system 
performance. It is clear that the old method of doing 
business is giving way to a more structured approach. We 
can no longer afford the luxury of designing to 
performance specifications and then supplying 
maintenance and diagnostic procedures after other 
objectives have been achieved. We have seen that the 
result of this nonintegrated approach to design has led to 
retest OK (RTOK) rates in excess of 40% with field no 
fault found (NFF) rates at 50% and false alarm rates 
(FARs) often exceeding valid detections [1,2]. Detailed 
system specification attempted to limit the downstream 
liability resulting from poor maintainability, but field results 
were often years away from the ad hoc measures taken 
by designers. As a result, the Department of Defense 
(DoD) instituted a standard to require detailed analysis of 
testability issues during design [3]. 
 

Many companies developed tools to help handle the 
analysis task. ARINC developed two tools to assist in 
developing testable systems and in streamlining the 
maintenance process—STAMP and POINTER. STAMP is 
a model-based reasoning system that is used to conduct 
testability analysis and develop fault-isolation strategies to 
improve system maintenance. POINTER, which was 
derived from STAMP, uses the system model generated 
by STAMP for its knowledge base. With the system 
model, POINTER interactively presents test material and 
guides the maintenance process through diagnosis and 
repair. POINTER may be applied to manual, 
semiautomatic, and automatic fault-diagnosis problems; 
advanced capabilities include learning and reasoning 
under uncertainty [4,5]. Many other analysis systems, 
based on the dependency model approach, have been 
developed as well [6-8]. These types of tools have been in 
use now for about 10 years and, in the case of STAMP 
and POINTER, have garnered significant and even 
spectacular results compared with past approaches [9,10]. 
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BASIC PROBLEM FORMULATION 
 

With STAMP, the basic formulation represents the 
topology of the system being analyzed in a graph 
representation, where the tests and components are the 
vertices of the graph and the dependency relationships 
are the edges of the graph. Specifically, the 
representation is a bit matrix that is an adjacency matrix 
for test dependencies [11]. 
 

Figure 1 shows the basic matrix formulation. The bit 
matrix representation is compact and requires only 0(n2) 
bits for storage, where n is the number of elements in the 
matrix, corresponding to the sum of the testable elements 
and the conclusion elements plus 1 (for the RTOK 
conclusion). Testable inputs comprise two elements 
under this formulation: one for the test element 
represented, and one for the conclusion element 
represented. The shaded portion of the matrix is not used 
because we do not consider component-to-test 
dependencies or component-to-component 
dependencies. 

requires O(n3) time. The result of using this approach is 
a good approximation of an optimization problem that is 
known to be NP-complete [12]. On the other hand, 
inferences are drawn in bit-parallel fashion and are 
significantly faster (i.e., 0(n)) than the logical chaining 
required by an expert rule representation of the system. 
Thus, portable maintenance aids for moderately 
complex systems can provide a full range of options 
and still respond to user input because of today's faster 
microprocessor chips. In fact, because models can now 
be considered that will require from 10,000 to 15,000 
elements, it is the compactness of this algorithm that 
led us to investigate the application to diagnosis of a 
full system at a level of detail that would be difficult for 
the normal rule. based expert system. 
 

Although the representation of the system is 
extremely compact and efficient, the very size of the 
model may become a problem from a computation 
standpoint, storage standpoint, or both. Conceptually, 
the problem can be partitioned into smaller pieces while 
still  retaining  the desired  level of  interaction at the full 

Test Elements Conclusion Elements 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: A value of 1 in a column indicates a dependency 
relationship. RTOK is always empty. 

 
Figure 1. Basic System Representation in STAMP and POINTER 

Although STAMP has evolved to include a number of 
logical constructs that cannot be represented in this 
format, the basic graph representation is still an integral 
part of the calculational burden. In particular, the test-
choice algorithm (which we have simplified for an 
interactive calculation) involves the computation of 
information   entropy   values   across   this   matrix    and  

system level. Ideally, this system-level partitioning is 
accomplished with one or more readily observable 
indications that then point to the appropriate 
submodel. If the submodels are partitioned at points 
of no overlap or at least minimum overlap, 
computation efficiency is maintained. We call a test 
that  partitions  the  model  into  two  nonoverlapping 

330 



submodels a "clean" cut point. If the submodels are 
significantly smaller than the original model, a 
substantial reduction in storage requirements results. 
Figure 2 shows conceptually the limits of partitioning a 
model into two submodels. The partitioning into 
submodels can be either well-conditioned (as shown in 
Figure 2.a) or ill-conditioned (as shown in Figure 2.b), 
the major difference being in the benefit derived by 
partitioning. Ill-conditioned partitioning may be 
described as partitioning that has only a small impact on 
model size requirements. Figure 2.a shows a 
substantial reduction in the model size regardless of the 
outcome of the test symptom, and Figure 2.b shows a 
poor partitioning taking place with the symptom chosen. 
Given a set of readily observable indications, we may 
be able to accomplish only ill-conditioned partitioning. 
But ill-conditioned partitioning points should be avoided 
where possible. 

b. Ill-Conditioned Submodel Partition 
 

Figure 2. A Representative Partition of a 
Larger Model into Two submodels 

 
We have developed three basic techniques for  
partitioning the model. The first, articulation-point 
partitioning, uses the properties of the graph 
representation. The second, logical cut-point 
partitioning, takes advantage of the logical properties 
of the representation. When dealing with real 
systems, it is recognized that graph cut points and 
logical cut points may not occur at readily observable 
indications,    so    the    third    technique,     arbitrary 

 partitioning, provides a completely arbitrary cut-point 
process. The latter is subject to a varying degree of 
Submodel overlap. 

PARTITIONING BY ARTICULATION POINTS 
 

An articulation point, or cut vertex, is a vertex on a 
graph that can be used to cleanly separate the graph into 
two subgraphs. The vertices of the graph are the 
candidates for the articulation points, which, in our case, 
are the tests (see Figure 1). To derive the formulation of 
an articulation point, we must first examine graph 
connectivity. We define our graph, G, to be a set of 
vertices (tests and conclusions) and edges 
(dependencies) as illustrated in Figure 1. The vertices, V, 
are connected by the edges, E. An undirected graph is a 
graph in which the edges may be traversed in either 
direction. A directed graph is a graph in which the edges 
may be traversed in only one direction. A path is defined 
as the set of edges required to go from some vertex (say, 
vi) to another vertex (say, vj). If we assume the graph is 
undirected, then the graph is connected if and only if at 
least one path exists between any pair of vertices. If the 
graph is directed, then the graph is "strongly" connected if 
and only if at least one path exists between any pair of 
vertices. A directed graph may be "weakly" connected if 
its undirected form is connected but its directed form is 
not strongly connected. Any strongly connected graph is 
also weakly connected. One final form of connectivity that 
must be examined is biconnectivity. A graph is 
biconnected if and only if, for every pair of vertices in the 
graph, at least two independent paths exist between the 
vertices: 

 
 
 

where Pijk is the kth path between i and j. If a graph is not 
biconnected, then some pair of vertices, vi and vj, exists 
such that a third vertex, vx, is on every path between vi 
and vj,. This can be represented by 

 
 
 

The common vertex in the graph vx is the articulation 
point. 
 

Figure 3 shows a topological representation of a 
system that we use here for example purposes. In Figure 
3, t is used for the test elements, and c is for conclusions. 
Two additional elements are given by int and inu, 
representing testable and untestable inputs, respectively. 
The testable inputs are modeled as two vertices (test part 
and conclusion part). The untestable inputs are modeled 
as single vertices. The actual process by which 
articulation points are uncovered considers only the test-
to-test subgraph and involves the building of a depth-first 
spanning tree, which is an approach to systematically 
examining every vertex of a graph [13]. For the system of 
Figure 3, the articulation 

a. Well-Conditioned Submodel Partition 
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Figure 3. An Example System for Illustration 
Purposes 

points are identified as t13, t14, t15, t16, t17, int1, and int2,. 
Given the articulation points, the system model can be 
partitioned along these points to form small submodels. 
Once the model is partitioned, two computationally 
intense processes are simplified. 
 

First, in analyzing a system, we determine all higher 
order dependencies for a test through a process called 
closure (see the next section, "Partitioning by Logical Cut 
Points"). This algorithm requires 0(n3) time. The time 
required for closure can be reduced if we first partition the 
model, close each submodel, construct a high-level 
model representing the submodel interaction, and close 
this high-level model. 
 

Second, as mentioned in "Basic Problem 
Formulation," the task of selecting a test to evaluate also 
requires 0(n3) time. To choose a test, we proceed in a 
top-down fashion in which we can choose from among 
the articulation points. This process continues until a 
single submodel is isolated; that submodel forms the 
basis for further diagnosis. The resulting diagnostic 
strategy may be less efficient than considering the entire 
model at once, but computation time and storage space 
requirements can both be significantly reduced. 

PARTITIONING BY LOGICAL CUT POINTS 
 

The articulation-point technique relies heavily on 
the graphical properties of the representation. The logical 
cut-point technique relies heavily on the logical 
properties of the representation [14]. This technique 
involves identifying tests that are piece-wise serial. A 
serial system is one in which there is a test between 
every component and the system is represented by a 
single flow path. Figure 4 shows a simple serial 
system. In the serial system, each test is a clean cut 
point in that it divides the overall problem into two 
independent sub problems. The graphical form, when 
ordered, is an upper triangular matrix. Each test feeds 
all downstream elements and is fed by all upstream 
elements. Real systems, of course, seldom exhibit this 
serial nature, although significant parts of them may 
(see Figure 3). A test is considered to be piece-wise 
serial if it exhibits the properties of a test in a serial 
system. That is, when the system is ordered, the test 
feeds all downstream elements and depends upon all 
upstream elements. 
 

One way to identify serial subsystems within a 
larger system would be to order the system and 
examine each test to see if the piece-wise serial 
property exists. This requires the logical chaining of 
inferences to check for the existence of relationships 
that occur beyond the nearest neighbor. It is sufficient, 
however, to examine the higher order relationships to 
determine whether an upstream or downstream 
relationship exists between the test being 
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Figure 4. A Serial System for Illustration Purposes 

considered and every other test. For graphically 
represented systems, the higher order relationships may 
be obtained through a process called transitive closure 
[15]. Transitive closure replaces the chaining of rules 
that must be applied to examine the higher order 
relationships and is based on the transitivity of logical 
implication: 

 
 

where P, Q, and R are logical premises, and → indicates 
implication. 
 

An additional form of closure, logical closure, checks 
for the presence of higher order relationships using the 
inference metarules of the inference engine being used 
[16]. The primary metarules used in STAMP and 
POINTER are provided in Table 1. Rules 4 and 5 of that 
table provide the basis for logical closure and may 
provide additional higher order dependencies due to 
secondary implications. In particular, a secondary 
implication results as follows: Given two tests, ti and tp, if 
we examine the set of conclusions upon which ti 
depends, A, and the set of conclusions upon which tj 
depends, B, and find that set B is a subset of set A, then 
we conclude that ti depends upon tj. 
 

If an upstream or downstream relationship exists 
between the test being considered and every other test, 
then the test being considered satisfies the piece-wise 
serial requirement for at least one ordering of the 
system. This ordering can be given as 

 
 

of these identified cut points. There is no guarantee that 
the partitioning techniques described will identify any cut 
points, and there is no guarantee that the identified cut 
points will be useful in terms of model reduction or will 
contain information that can be made available at the 
beginning of a diagnostic problem. We may be forced to 
choose some arbitrary test (arbitrary to the model 
representation, but significant in that it represents a gauge 
reading, panel light, or some other easily observable 
phenomenon). 
 

Arbitrary partitioning is achieved by actually 
exercising the inference engine [17]. The basic inference 
metarules used within STAMP and POINTER (Table 1) 
can be applied to an arbitrary outcome, and the resultant 
submodels can be developed by collecting known 
information from the larger model. For example, 
partitioning at an arbitrary tx. would involve examining a 
good outcome of tX and applying rules 2, 4, and 5 of Table 
1. Each of the elements determined by these rules would 
be eliminated from the overall model, and the resulting 
submodel would be the one to use when a good outcome 
of tX is observed. Similarly, we would examine a bad 
outcome of tx by applying rules 3, 4, and 5 of Table 1. 
Each of the elements determined by these rules would be 
eliminated from the overall model, and the resulting 
submodel would be the one to use when a bad outcome of 
tx is observed. Thus, the two submodels that result from an 
evaluation of tx are determined. The resulting submodel 
development may not be independent (that is, the two 
submodels may contain one or more elements in 
common), but they retain the desired model integrity. 

                                        SUMMARY OF TECHNIQUES 
where LBPk is the logical cut point, and L indicates a 
higher order direct logical relationship between every 
other test (either a feed or dependency). For the system 
of Figure 3, the logical cut points are identified as t3, t13, 
t14, t15, t16 and t17 It is interesting to note at this point that 
the two techniques for obtaining clean cut points gave 
different, but overlapping, answers. 
 
 

PARTITIONING AT ARBITRARY POINTS 
 

The techniques examined to this point center on 
determining the vertices (tests) around which clean 
cuts can be made. That is, the larger model can-be 
broken into two independent submodels. Nature or 
design may not be kind enough to allow  us to use any 

 
We have examined three techniques for approaching 

the problem of diagnosis of extremely large systems. 
Each of the techniques can be applied recursively; that is, 
each of the resulting submodels can again be divided into 
submodels. This procedure would potentially allow a 
16,000-element model to be broken into two 8,000-
element models, four 4,000-clement models, or eight 
2,000-element models. (This latter size model is 
comfortably worked with on a regular basis in STAMP and 
POINTER.) 
 

Table 2 considers each test in the example system 
given in Figure 3 as a cut point. It can be seen that not all 
of the clean cut points are uncovered. From Table 2, it 
appears that none of the clean cut points occur at an 
optimal  point.    The  original  matrix  of  Figure  3  has  46 
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Table 1. STAMP and POINTER Inferencing Metarules* 

1 tj untestable tj untestable is the 
only inference. 

 
2 tj good Every element upon which 

t.j depends is good. 
 

3a tj  bad Every element which tj 
feeds is bad. 

3b tj  bad Every conclusion element 
which tj  does not depend on 
is good. 

 
3c tj  bad Every element upon which tj 

does not depend or feed is 
usuallvt not needed. 

 
4 After rules Every unknown element tp 

1-3 that depends on all of the 
unknown elements is bad. 

5 After rules Every unknown element tp 

1-3 that depends on only known 
good elements is good. 

`Inference rules due to asymmetric, conditional, and linked outcome 
tests are not shown in table. 
tUnless not evaluating the test under condition causes an 
additional ambiguity group. 

elements, and an optimal cut would put 22 or 23 
elements in the largest submatrix. This does occur with 
t10, but that test is not a clean cut point. The submodels 
for this problem would have to be derived by the arbitrary 
partitioning technique. 
 
 

FUTURE DIRECTIONS 
 

The techniques described in this paper are only a 
few of many possible approaches for partitioning 
complex diagnostic problems. For example, in addition to 
identifying articulation points, it may be possible to 
identify a set of minimal vertex cuts, where a vertex cut is 
a set of vertices such that removal of all of the vertices 
disconnects the graph. If we specify some k ≥ 1, then we 
can identify all vertex cuts of size k or less, which 
includes the articulation points as vertex cuts of size k = 
1. For a given k, the time required to identify the k-vertex 
cut is O(n2). 

Table 2. Examination of Tests as Cut Points 

Test Largest Articulation Logical Cut Clean
Submatrix Point Point Cut

t1 34 No No Yes
  t2 42 No No Yes
t3 38 No Yes Yes
t4 30 No No Yes
t5 35 No No No

  t6 25 No No No
t7 25 No No No
t8 25 No No No
t9 25 No No No
t10 23 No No No
t11 25 No No No
t12. 27 No No No
t13 35 Yes Yes Yes
t14 39 Yes Yes Yes
t15 42 Yes Yes Yes
t16 42 Yes Yes Yes
t17 39 Yes Yes Yes
f18 25 No No No
int1 44 Yes No Yes
int2 44 Yes No Yes

In addition to applying the vertex cut technique, it 
is also possible to identify minimum-edge cuts in the 
graph, An edge cut is a set of edges such that the 
removal of all of the edges disconnects the graph. A 
minimal, nonempty edge cut is also called a bond. By 
applying a method such as the Ford-Fulkerson 
method [18] for identifying maximum flow in a 
network, we can find the minimum cut of the network. 
Because the method has polynomial time solutions, 
the approach is also computationally tractable. 
Determining if a graph is k-edge connected for 
arbitrary k is known to be NP-complete. 

CONCLUSION 
 

The partitioning techniques described allow the 
development of responsive diagnostic models of 
arbitrarily large size if enough readily observable 
information sources are used to start the diagnostic 
problem. These techniques are part of an overall 
package of techniques used in the diagnostic and 
testability information modeling of complex systems. 
Tools exist that combine smaller models, trace 
dependencies, and port models between machines 
and software systems as well as a variety of computer-
aided design (CAD) interface tools. 

Rule Condition Action 
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