

LOGIC MODELING AS A TOOL FOR TESTABILITY

Presented at
AUTOTESTCON '85

Long Island, New York
October 22 - 24, 1985

AUTHOR: R. A. De Paul Jr.
DETEX Systems, Inc. Villa Park, Ca. 92667
(714) 637-9325
JULY,1985

ABSTRACT

Logic Modeling as discussed in this paper refers to a disciplined method of communicating
the NATURAL knowledge base or scheme of any single or multiple generic equipment
organization. It is not limited to specific methods of digital logic design, display, or simulation,
nor is it a drawing system.

The Logic Model (frequently referred to as LOGMOD or Design Disclosure Format) has been
identified and evaluated as a bone fide method of deriving Testability by Government and
Industrial institutions for about twenty years. This test of time proves that Logic Modeling is a
viable design disclosure technique and a friendly user communication tool. Recent
refinements have contributed to its continued success in translation from design to support
applications.

There is an ever increasing requirement for a single data base capable of multi-discipline
use. Therefore it is incumbent upon anyone developing any data base that the data base be
capable of communicating objective quantitative parameters. Some of these parameters are:
Figure of Merit, BIT/BITE candidates for design, determination of test strategies before
hardware commitment, exhaustive test strategies to structure Test Program Sets, and
technically accurate delooping schemes. Logic Modeling more than fulfills these requirements
and has truly become a mature system for use throughout the design and support disciplines.

INTRODUCTION

In any system development program, interface must be made between Customer and
Contractor at a point of maximum impact, and the best impact can be made before building
pre-production models for test. Therefore, if any of the concepts which result from analysis
have to be exercised, it should be done at the proper points in time.

Currently computerized analytic techniques of COMPONENT models have been developed
and used. The shortcoming is that most of our computer techniques lack sufficient and
disciplined input data to assess testability at the SYSTEM level, equally as well as at the
COMPONENT level.

"There exists a tremendous gap between the concept stage of design and the operational
stage, and this is where most of the decisions by the technical people are made. In this gap
there is a lack of documentation which defines the system as it is developed by the
contractor. The lack of documentation imposes a real barrier to anyone sitting back with a
new test concept, or anyone with a new micro device who wants to introduce it into the test
system. The barrier exists because communication cannot be made with the system design.
Therefore the first problem is to translate our knowledge of a system into a working document
(or data base). This we may term Design Disclosure. Formalizing this documentation or data
base into a Design Disclosure Format (DDF) will produce the guidelines necessary to
providing thorough system analysis."

 2

These ideas are as pertinent today as they were in 1965 (April 27, 28). A breakthrough was
taking place in communicating operational equipment design to the test engineer. Logic
Modeling was the breakthrough. Its generation was discussed at the first NMSE (Naval
Material Support Establishment) System Performance Effectiveness Conference, in the Civil
Service Commission Auditorium, Washington D.C. A portion of the ideas expressed in the
previous paragraph were taken from the Welcoming Address by RADM C.A. Curtze,
Assistant Chief, Bureau of Ships. Other portions were excerpted from Mr. Paul Giordano,
System Effectiveness Branch Head, U.S. Naval Applied Science Laboratory, Brooklyn, NY.

Here we are, more than twenty years later asking ourselves the same questions. This time
there is an advanced computer technology able to develop Logic Models thousands of times
faster and have the models accurately quantifying almost all the parameters called for in MIL-
STD-2165. An example of how the Logic Model has been enhanced in the past twenty years
is perhaps best stated by Mr. Hiroshi Satake (NAVELEXCEN, Vallejo, CA) in his report
discussing LOGMOD (or LOGic MODel) "LOGMOD.MMO" dated February 28, 1985. "The
power of Logical Modeling rests on its simplicity: 1) the analyst doesn't have to be an
engineer; 2) LOGMOD generates products of a very general utility; and 3) LOGMOD can be
hosted on a microcomputer. The two general principles with which LOGMOD simplifies fault
tree generation for testing also are the source of LOGMOD being dismissed as too simplistic.
I choose to call LOGMOD elegant and realizable."

THE LOGMOD CONCEPT

The LOGMOD Concept illustrated in Figure 1 and outlined below is:

* A set of procedures to unambiguously assess the testability of hardware/software during
any phase of its development from concept through production;

* The application of a rigorous set of analysis techniques to formulate a true multi-use Natural
Intelligence knowledge base;

* The Cause and Effect philosophy developed as a pragmatic design and support tool;

* A means of automatically obtaining a comprehensive testability report containing, among
other assessments, a Figure-Of-Merit (FOM) based upon design and support factors;

* A means of automatically obtaining Logic Test Structures (LTS). These are hardcopy
printouts in a graphic form similar to flow charts, depicting the optimum testing strategy
required to find a single malfunction or any combination of malfunctions in an equipment;

* A means of human interaction with an active or passive electronic maintenance aid to
"WALK" a technician through optimized fault isolation activities. This replaces voluminous
technical publications yet maintaining a near perfect confidence level in fault detection and
isolation;

* A primary building block for developing an "EXPERT" support system;

 3

* A graphic hard copy display depicting the true interrelationship of all system or equipment
elements (known as a LOGIC MODEL or MANAGEMENT DIAGRAM);

* A means of allowing rapid and accurate Computer Aided Battle Damage Assessment and
Repair (GABDR) using assessors of less expertise than conventionally required, and using
the same knowledge base developed for ordinary maintenance tasks;

The animated illustration (Figure 2) serves two purposes. To bring an otherwise static block
diagram into a dynamic form, and to portray the amount of task time associated with the
interrelated Logic Modeling activities. Naturally the outputs would reach fruition by correct
testing strategy. The SAMA is a Stand-Alone-Maintenance Aid and a forerunner to the hardware
portion of an Expert System.

 4

HARDWARE
ANALYSIS IN

LOGIC
STATEMENT FORM

LOGMOD CONCEPT

MANAGEMENT
DIAGRAM

TRAINING ASSISTANCE
AND TECHNICAL

 SUPPORT BY
QUALIFIED

F

LOGIC TEST
STRUCTURES

D

TE
T

SOFTWARE
BUILDING BLOCK

FOP "EXPERT"
SUPPORT SYSTEM

BATTLE
ASSESSMENT
AND REPAIR
TESTABILITY
REPORT

(INCLUDING
IGURE OF MERIT)

Figure 1

Figure 2
PASSIVE
IAGNOSTIC
STING USING

ABLET SIZED

5

 6

LOGMOD METHODOLOGY

There are two major principles underlying the reason for Logic Modeling. These were referred
to by Mr. Satake in his report "LOGMOD.MMO". They are stated here for clarity.

LOGMOD PRINCIPLE I FAULT FLOW FOLLOWS SIGNAL.

LOGMOD PRINCIPLE II FAULT FLOWS REGARDLESS OF THE ELECTRICAL,
MECHANICAL ETC. FUNCTIONS OF THE DISCRETE ENTITIES REPRESENTED.

The first principle simplifies analysis such that 90% (or more) of the time, in some instances
the analyst is inputting a type of netlist description of the circuitry or components. In others,
he describes the interrelationship between replaceable units and sub-systems. Not all
phenomena are causal, but certainly most designed systems and all lumped electric circuits
are. The validity of this principle rests on a fault buffering assumption: a fault affects forward
signal paths, not backward signal paths. Classic exceptions to this fault buffering is the
"blown fuse", bad switch, power supply loading, open relay coils, stuck-at-tri- state input
cases and the redundant path case. In the 10% or so of the cases where fault modes are not
buffered, special modeling rules are required which are only slightly more difficult to identify
and apply. The analyst inputs schematics and system block diagrams into the LOGMOD
Organizing and Structuring Program in a simple coded format. The resulting outputs are then
formulated into specific forms of directed graphs and report data.

The second principle shows little regard for how an output depends on the workings of an
item or its inputs. It generates its reports, fault trees, etc. based merely on the topology of the
signal flow graph which it generates as a primary output. ATPG designers and FMEA
analysts spend a lot of time performing an imprecise form of backward inference. This is a
monumental task even in the simplest circuit cases: the number of paths grows exponentially.
Also, most designers are trained analytically (by forward inference: "if A then B"). The
discipline required to resolve a search strategy "if not B then maybe A or probably not C . . . "
is currently practiced more as an art rather than as an engineering discipline. When the
designer is confronted with resolving this strategy for each item output mode (especially at
the system and sub-system level) and with having to understand how each item functions,
false short cuts and errors are inevitable.

LOGMOD partitions the problem of "understanding and reliable test strategy generation" into
two manageable steps: 1) the analysis required to know the "Goodness" of an output which is
the forte of any designer and; 2) the generation of the test strategy for which the designer is ill
equipped in training and time. The engineer, preferably working with a circuit simulator CAD
tool, and a target system can devote his expertise to delooping complete test sequences by
devoting his time to understanding the system for the purposes of analyzing what a "good"
test point indication is rather than what a "bad" indication implies in the way of the next test
point path.

A designer can obviously think of many exceptions to these simplifications in the real world.
But these are the very principles used by electronic technicians (super-techs) to find faults. A

 7

good card swapper will find random faults faster than any designer especially for multiple
faults. Moreover, simple modeling rules (sometimes termed "non intrusive") can be developed
for these exceptions.

These principles are certainly very true of functional testing digital circuits but also apply to
analog equipment. At the microscopic (transistor, bias, and coupling) level there is little
buffering of faults, even in digital circuits. There are many more "blown fuse" cases in analog
circuits. But at the macroscopic level there is forward direction to fault or signal flow from
block to block: although the blocks may overlap or be "fuzzy".

 LOGMOD MECHANICS

The Logic Model method transforms the circuit or block "logic statements" into an
intermediate, internal "waterfall" dependency structure: structuring least dependent signals
and items to the left, and most dependent to the right. This internal representation becomes
the heart of the LOGMOD methodology. One of the important implementation traits of the
LOGMOD programs are that every output has direct application to the designer, the
logistician, or the test engineer. To gain a feeling for the power and validity of the LOGMOD
Concept note how the different outputs fall out of a single original dependency structure.

 LOGIC TEST STRUCTURES

The Logic Test Structures (LTS) are the automatic generations of Checklist and Independent
fault finding test strategies printed out on hard copy for proofing or developing electronically
embedded test strategies. Strategies are printed to a separately selectable output file.

Each of these outputs is a computerized "tree chart" approach to system testing and
diagnostics EXCEPT that the LTS are based upon a mature and proven test strategy
technique which explicitly provides exhaustive and interdependent tests for any equipment or
system. Since the LTS is developed with LOGMOD, the conventional, ever-changing
philosophical diagnostic approach is replaced with LOGMOD's scientific, objective and
pragmatic test optimization.

The CHECKLIST Logic Test Structure output approaches testing and fault isolation from a
performance test mode. In this mode, all known or implicit information is retained from any
performance test to the following performance test(s), minimizing testing required for multiple
or secondary failures.

The INDEPENDENT Logic Test Structure approaches testing and fault isolation from a failure
observed, or what may be referred to as a fault indicator mode. In this mode, each fault
indicator develops its own logic test structure completely independent of all others.

In either case, each output may be considered as a test "road map". In reading this "road
map", "GOOD" test results move horizontally from left to right and "BAD" test results move
down- ward. In the event that an entire logic test structure does not fit within the physical
boundaries of an 8 1/2" x 11" sheet, continuation references appear. The actual length of

 8

each logic test structure is dynamic in nature. They may continue from one page to another
until the entire structure is defined.

Any LTS can be constructed or reconstructed instantaneously with each new data input as its
construction is determined by the LOGMOD Structuring program. Again, as typical with
LOGMOD, there is NO ADDITIONAL PROGRAMMING REQUIRED. Test Program Set
Developers find immediate use for the Logic Test Structure. This graphic hard-copy print-out
allows both Customer and Contractor to visually compare the ease of malfunction isolation or
assessment. The LOGMOD generated fault tree is optimal in the following respects:

MINIMUM TREE WIDTH (MINIMUM TESTS): The fault tree makes maximum use of previous
test results. The goodness of dependent test points implies the probable goodness of their
inputs. The exceptions to this can be handled by a small change. This applies not only to the
GO-NO-GO confidence test points, but throughout the tree. No test point is tested
unnecessarily. For each node (including the root node), a minimum number of test (including
confidence test) branches is required.

MINIMUM HEIGHT (BISECTION): The fault tree uses true bisection to minimize the number
of test nodes required to peg the fault. If a test result is bad, it tests the untested inputs. If the
inputs are good, it tests the forward middle test points. If bad, it tests the backward middle
test points.

Although LOGMOD diagnostics does not perform bisection in the classical sense, because of
its internal dependency representation, it knows inputs, outputs, and middles of any fault
without any additional memory or flagging requirements. Given a real world bus with multiple
sources (which are wire- and'ed) and multiple destinations (which may become bad loads),
LOGMOD will do a proper "card pull" bisection.

A very important characteristic of the LOGMOD test strategy is that it will find multiple faults.
And it will find them with a minimum number of test points. Most test program sets will not
guarantee fault isolation in the case of multiple faults. Again, this characteristic drops out of
the waterfall dependency structuring of LOGMOD.

LOGIC TEST STRUCTURES AND DELOOPING FOR TESTABILITY

Thus far we have made reference to three outputs of the LOGMOD Computer programs, i.e.,
the waterfall, the CHECKLIST Logic Test Structure and the INDEPENDENT Logic Test
Structure. Now we shall briefly describe the Testability Report output of the LOGM0D
Computer Programs.

Those in the scientific community who have become aware of LOGMOD have ALWAYS
found it as an answer to their needs in understanding HOW to build a more testable unit, and
HOW it can be used to assist the diagnostician. So, now that we have described a real
"cradle to grave" concept evaluated by the U.S. Government for at least 18 years, why is it
still being evaluated? Primarily because it has its bases in simplicity and truth, while most
people are looking for some very complicated and magic technique.

 9

What is the real question in comparing Testability/Diagnostic techniques? Whatever manner
we use to arrive at a quantitative measure for Testability must have a firm basis in the
structure and organization of the input data.

Feedback loops play an important role in this structure. This is one of the great contributions
LOGMOD makes to eliminating so many false removals. Now, one may say, "I know where
all the loops exist." Past experience with Prime Equipment Contractors has indicated they
have found how easy the LOGMOD techniques automatically find loops which are inherent in
the operational equipment, yet the analyst or engineer did not notice them while documenting
the equipment.

Since hardware analysis may be accomplished by several analysts working on different
portions of the hardware, the resulting graphic interlaces common facts yet distinguishes
unique information. The graphic representation of logic statements automatically highlights
feedback loops that may or may not have been transparent to the analyst(s). It is absolutely
necessary that the existence of these feedback loops be disclosed and completely eliminated
through some sort of de-looping scheme prior to making any conclusion regarding the degree
of testability residing in any system or equipment. Furthermore, since only meaningful tests
can properly contribute to the isolation of a malfunction, tests appearing in a feedback loop
must have their logic statements reviewed for accuracy. If implicated logic statements are
correct, then the designer or management must be made aware of the loops and decide
whether a change is required, or even possible to be made, to "de-loop" the hardware. It is
important to emphasize that, AT TIMES DE-LOOPING CAN BE ACHIEVED BY ADDITION
OF APPLICATION SOFTWARE WITHOUT ACTUAL HARDWARE MODIFICATION.

Let us pause for a moment and consider the fact that some equipments may have inter-
related loops which form a mathematical union. In such an instance some of the loops may
be transparent to the analyst while others are seemingly masked. In any event, however, a
complete de-looping process must take place even though masked loops seem to complicate
the de-looping process. The LOGMOD Algorithm can automatically deloop the entire Logic
Model or it can provide the analyst outputs of intermediate steps in de-looping which allows
the same type of decisions to be available at each step in de-looping as was originally
available with transparent loops; namely, make a hardware modification, add application
software, or condense tests (which may enlarge ambiguity groups).

In the event that a logic statement is correct but modification to the hardware is not desired or
possible, the LOGMOD Concept includes a special de-looping computer program which
automatically condenses the tests involved in a loop. This technique in no way affects the
technical integrity or operation of the hardware. However, it does allow meaningful testability
information to be derived by the LOGMOD Programs.

Somehow, any Testability/Diagnostic technique must account for all inherent loops;
otherwise, any attempt at documenting a diagnostic strategy is at best a guess. Users of the
LOGMOD Concept, without exception, have verified the actual existence of, as well as, the
completeness of loop determination by the LOGMOD Algorithm. Without a completely

 10

effective treatment of this one small area, "loop handling", the quantitative Testability
measures may be suspect.

LOGMOD TESTABILITY OUTPUTS

Following is a listing and brief description of those outputs of the LOGMOD Algorithm which
directly influence Testability.

1. Figure of Merit

How often testing will reveal a combined set of ambiguity groups. The size of these sets are
listed numerically beginning with a fault group of one (1) ambiguity group, and proceeding to
each successively higher combination of ambiguity groups. This calculation is expressed as a
percentage.

2. Performance Test List (Functional Operation Test List)

A list of the minimum (and exact) tests which must be performed to determine the complete
functional operability of an equipment or system with 100% confidence.

3. Maintainability Information

A. The Test Strategy (and results) for each unique ambiguity group.

B. The testing time required to perform fault isolation to each ambiguity group (in units of
1/10th minute)

C. The cumulative testing and replacement time for each ambiguity group (in units of 1/10th
minute).

D. Test Strategy Signature of a failed item. This is the combination of "good" and "bad" tests
determined to be the most optimal.

4. Fault Isolation Times

A summation of all test times associated with the test strategy to find a malfunction if the
performance check fails. These fault isolation times may be printed-out from the LOGMOD
Structuring and Organizational program prior to completion of test procedure generation to
influence the placement of sensors and test procedure language.

5. Hierarchy of BIT/BITE Candidates

A hierarchal listing of relative importance of each test in its ability to correctly and
successively "split-halve" the system for testing. This list contains all nodes, actions and
states disclosed by the equipment/system operational scheme. This portion of the report may

 11

become extremely interesting in that sometimes designers clearly show test points for signals
of very little importance to fault isolate and yet do not provide points for very important test
signals. Generally, test points are provided for the sake of the designer, not for fault isolation.
This report provides a rational, prioritized list of test points to the designer.

6. Item (Ambiguity Group) Involvement Ratio

How often a specific ambiguity group is involved in all test actions. This calculation is
expressed as a percentage.

7. Items Tested (an Optional Output)

A listing of all hardware related to each test, including performance tests.

OTHER LOGMOD OUTPUTS

VALIDATION

This file output is essentially a Failure Modes and Effects output. It correlates for each item,
the effects of its being out of tolerance. It also identifies the test point path required to identify
the out of tolerance item. It is not difficult to imagine how a collection of such paths can be
used to generate a test strategy. The INDEPENDENT Logic Test Structure output in the form
of a fault tree matches these paths. However, it is the structure of the test paths which makes
this collection work as a "fault tree".

MTTI and MTTR REPORT

This report calculates a predicted MTTR and MTTI given simple estimates of time to measure
each test point and repair each item (in units of 1/10th minute).

SUMMARY

Two LOGMOD principles provide the basis for dramatically increasing communication
between design and support functions through the collective use of a single
hardware/software knowledge base available from Natural Intelligence. A key ingredient is
the automated generation of optimized fault paths (or test strategies) at the component level
as well as the system level. This in turn allows Testability parameters to be more accurately
predicted at the proper point of Customer/Contractor impact decreasing non-recurring Test
Program development time in present systems while improving fault isolation performance
(both in terms of percentages and isolation time). LOGMOD automatically generates the
optimal fault, paths. Because the diagnostics can be targeted to functional automatic fault
isolation test programs, usually only minimal changes will be required to the test stimulation
primitives already available.

 12

CONCLUSIONS

The Logic Modeling concept expressed in this paper is not new, nor are the reasons for its
development. At least twenty years of tracking provides what we have known from nature
since its beginning, namely: 1) anything that is material will breakdown; and 2) to provide
some reasonably long lasting "fix" of any material object requires an organized and structured
knowledge of the NATURAL makeup of that object. Taken to its limit, a long enough period of
inadequate "fixes" to the Services' equipments could consume all the Services' resources in
support. There may be no resources left for the development of new equipment without
neglecting already fielded equipments. Logic Modeling offers the most natural basis of
knowledge accumulation for use in Project Management, Design for Testability (at any level),
and optimized test strategies for fault detection and isolation.

As in any system, there is always room for improvement. LOGMOD is no exception. If not
already accomplished prior to the publication date of this paper, non intrusive testing,
weighting of fault strategies, an Analyst's Guide, and additional printouts describing the tests
and items involved in each loop, are output priorities which should be accomplished. Hooks
for CAD are already in the LOGMOD Structuring and Organizing Program.

