An Introduction to DSI and our Products

DSI

Eric Gould December, 2010

DSI International 36 years of diagnostic engineering

DSI's products

eXpress

(1998)

STAGE (2008)

eXpress Run-Time Authoring Tool (2010)

DSI is the world's leading provider of diagnostic engineering software

Current U.S. Customers

Major Companies BAE Systems Boeing **General Atomics General Electric General Dynamics** Honeywell **Lockheed Martin** Northrop Grumman Raytheon Sikorsky

Government

U.S. Army U.S. Navy U.S. Postal Service

Universities North Carolina A&T Alabama A&M

over 200 licenses sold within the United States

DSI is the world's leading provider of diagnostic engineering software

International Customers

Europe

EADS (European Union) Eurocopter (France) MBDA (France) MBDA (U.K.) Nexter / GIAT (France) Sagem (France) THALES (France)

Asia

Aviation Technologies (China) Dongfanghong Aircraft (China) Ishikawajima HI (Japan) Kingswell Enterprises (China) Mitsubishi HI (Japan) Shiji Electronics (China) Tianwei Industry (China) Xi'an Industries (China) Yuntong Technology (China)

DSI has extensive experience on major programs

2nd Gen RLV

Future Combat Systems

Joint Strike Fighter

TSAT Satellites

X-33 VentureStar

Fire Scout UAV

CVN-76 Nimitz-Class Supercarrier

New Evolution Locomotive

Comanche Helicopter

Eurofighter

AIM-9X Evolved Sidewinder Missile

Crusader Self-Propelled Howitzer

Some current programs using eXpress

JLENS (Raytheon)

CH-53K (Sikorsky)

Predator – MSTS (Raytheon)

GCV (Boeing)

JASSM (Lockheed)

Standard Missile (Raytheon)

X-Band Radar (Raytheon)

CVN-21 – EMALS/AAG (General Atomics)

Four main goals of diagnostic engineering

Subsidiary benefits of diagnostic engineering

Availability

Cost of Ownership

Effective Isolation to Optimum Repair Level

Lower MTTI/MTTR

Reduced False Removals

Improved MTBF

Lower Maintenance Costs

Improved Fault Detection

Reduced False Alarms

Reduced System/Mission Aborts

FMECA/Critical Fault Analysis

Risk Priority Analysis

Unique Isolation of Critical Failures

Contracted diagnostic requirements Availability Cost of Ownership Effective Isolation to Optimum Repair Level

Improved Fault Detection

Unique Isolation of Critical Failures

Mission Success

The Challenge: How to use FD/FI requirements to achieve diagnostic goals Availability Cost of Ownership

> Effective Isolation to Optimum Repair Level

Improved Fault Detection

Unique Isolation of Critical Failures

Mission Success

The benefits of Integrated System Diagnostic Development (ISDD)

Reduce and Manage Risk
 Reduce Program Costs
 Provide Compliant Design
 Submit Winning Proposals

ISDD encompasses all aspects of diagnostic engineering

Requirements Derivation Requirements Flow-down Design Development Test Point Enhancement Design & Diagnostic Optimization Prognostic & Reasoner Development Embedded Systems Integration Life Cycle Support

Advantages of ISDD using eXpress

Addresses All Aspects of Diagnostic Design
 Integrates Logistics with Design
 Facilitates Collaboration & Integration
 Unifies Diagnostic Engineering Practices

The ISDD process

Requirement Improvements

Greater Stratification
Fewer Catch-All Calculations
Prioritization of Requirements
Requirements tied to performance
Requirements that cross disciplinary boundaries

© 2010 DSI International. This slide contains information proprietary to DSI International. Unauthorized use or distribution is prohibited.

eXpress interoperability

STAGE Roadmap

STAGE, Act I

Failure, Diagnosis & Replacement Prognosis / Maintenance

STAGE, Act II

Phases NRE Costs Logistics Planning

STAGE, Act III

Reconfiguration Redundancy Mission Success STAGE, Act IV

Resource Management Supply Chain Modeling

© 2010 DSI International. This slide contains information proprietary to DSI International. Unauthorized use or distribution is prohibited.

Prognostics Requirements

A typical prognostics requirement has four components:

- Scope: a set of failures for which prognosis is desired
- **Coverage:** the percentage of failures in the scope that must be prognosed
- Horizon: the time before failure that prognosis must occur
- Accuracy: the desired confidence/correctness of the prognosis

Prognostics Requirements: Example 1

"Prognostics shall predict at least 70% (with a 95% goal) of the mission critical failures from 480 hours to 96 hours in advance of occurrence with 80% probability."

Scope:Mission Critical FailuresCoverage:70% - 95%Horizon:480 + 96 hoursAccuracy:80%

Prognostics Requirements: Example 2

"[Prognostics] will accurately predict pending critical system failures...that might occur in a 72 hour mission, early enough to allow corrective action before the unit begins the mission. Prognostics will provide coverage for 45% SA and 35% EFF at a 90% accuracy (threshold) 70% SA and 65% EFF at a 99% accuracy rate (objective)."

Scope:	System Aborts	Scope:	Essential Fctn Failures
Coverage:	45% - 70%	Coverage:	35% - 65%
Horizon:	72 hours + CA time	Horizon:	72 hours + CA time
Accuracy:	90% – 99%	Accuracy:	90% – 99%

Prognostics & Diagnostic Effectiveness

There are two ways in which prognostics can be considered during diagnostic analysis:

- Prognosed failures can be included (analysis reflects the performance of both prognostics and diagnostics)
- Prognosed failures can be excluded (analysis reflects the diagnostic performance for non-prognosed failures only)