
© 1999 IEEE

THINKING BEYOND THE GROUP SIZE FETISH:
TOWARDS A NEW TESTABILITY

Eric Gould
DSI International

1574 N. Batavia, #3
Orange, CA 92867

714-637-9325
egould@dsiintl.com

Danver Hartop
DSI International

1574 N. Batavia, #3
Orange, CA 92867

714-637-9325
dhartop@dsiintl.com

Abstract – This paper exposes some major deficiencies
inherent within current methods for assessing design
Testability—critical shortcomings that not only might
cause adherence to contracted Testability requirements
to be in conflict with long-term maintenance goals (such
as Life Cycle Cost and Operational Availability), but
could also result in evaluations that fail to predict the
actual diagnostic behavior of the system or device. In
recent years, the need to accurately forecast diagnostic
performance has become more essential as more
development projects are contractually linked to the
maintenance of the fielded product (as witnessed by the
recent emergence of maintenance warrantees and the
combined contracting of development and maintenance
efforts). What is needed are Testability procedures that
can better serve long-term maintenance and support
objectives, yet remain true to the discipline’s original
intent of providing diagnostics-based feedback in early
phases of the development cycle. Hoping to foster a
less conflicted Testability practice, this paper proposes
some alternatives to current quantitative methods of
Testability assessment that can more accurately predict
diagnostic behavior and more consistently reflect the
relationships between a system or device’s diagnostic
capability and its Life Cycle Cost and Operational
Availability.

INTRODUCTION:
THE STATISTICAL HYPOCRISY OF
CURRENT TESTABILITY PRACTICE

For nearly three decades, the centerpiece of most
contracted Testability requirements has been that
isolation must be achieved to fault groups containing a
certain number of components a certain percentage of
the time, given the ability to detect a certain minimum
percentage of failures. The rationale for this
requirement was simple—if technicians could achieve
better resolution of failures, then replacement cost and

time would be reduced, ultimately translating into a
lower Life Cycle Cost (LCC) and a greater Operational
Availability (AO) for the device or system in question. It
has long been recognized, however, that this thinking
is inherently flawed. The additional testing necessary
to achieve isolation to smaller group sizes has its own
cost and time associated with it and therefore the
implementation of more extensive diagnostics does not
in all cases serve a project’s maintenance goals (not to
mention the cost of developing additional testing). By
blindly adopting the erroneous assumption that
isolation to smaller ambiguity groups necessarily
implies improved Maintainability, Testability analyses
are currently unable to recognize cases of diminishing
returns and can thereby easily subvert their own goals.

The fact that Testability as it is practiced today is little
more than a statistical means to an end is recognized
upon occasion and contracted Testability requirements
may be subsequently modified or waived in deference
to more fundamental objectives (such as LCC, AO, or
development cost). Frequently, however, the possibility
of conflict between long-term goals and short-term
requirements goes unnoticed and designers resort to a
variety of means—including, but certainly not limited to,
design modifications and the development of more
extensive diagnostics—to achieve their contracted
Testability obligations.

One frequently employed way of improving Testability
numbers without the introduction of design changes or
additional testing has been to treat several separate
components as if they were a single replacement unit.
This can often be a legitimate way to improve both
Testability and Maintainability, such as when several
inexpensive and easily replaced parts have relatively
high failure rates. However, because the increase in

the cost and time to replace this combined group is not
reflected in the isolated group sizes, this technique can
be misused. For example, if a group of components
designated as comprising a single replacement unit
were to have a relatively high failure rate and be either
expensive or time-consuming to repair, then the
improvement in calculated Testability numbers that
would result from this grouping would be misleading.
(When this technique is used in this manner, it is
frequently rationalized as being merely a partitioning
issue.) The result would be more attractive Testability
figures without a corresponding progress toward the
very maintenance goals that Testability analysis is
intended to support.

Another shocking disconnect between assessments of
Testability and Maintainability exists in the fact that it is
possible for Testability figures to be improved by
selectively utilizing less reliable components. Because
most Testability indicators take reliability data into
consideration, the introduction of a component with a
high failure rate that can be unambiguously isolated
(that is, that can be isolated in a fault group containing
only itself), may result in a substantial improvement in
Fault Isolation (Resolution) statistics. The result of this
maneuver is a Testability assessment that is inversely
proportional to the Reliability of the design—another
instance of Testability at cross-purposes with itself.

Wittingly or not, current Testability methods repeatedly
encourage this statistical hypocrisy—the ravaging of
various maintenance goals in the name of improved
Maintainability. It happens even when Testability is
pursued with the best intentions and in the most
conscientious manner possible.

For example, when a design does not meet contracted
Testability requirements, one possible solution is the
introduction of additional BIT hardware to facilitate fault
detection and/or isolation. What is typically overlooked
(sometimes intentionally) is that this BIT hardware is
frequently more prone to failure than the functional
hardware that it tests. When contract requirements are
interpreted as applying only to the operational or
functional elements of a design, Testability analysis will
show the diagnostic benefits of the additional testing
capability without depicting the negative impact of the
BIT hardware upon design Reliability. In this case, the
strict adherence to contract Testability requirements
(as they are typically expressed today) could actually
result in a system or device that fails more frequently
and, unless the BIT is equipped with the capacity to
test itself, has larger ambiguity groups. In other words,
the ability to achieve maintenance goals has been
hampered for the sake of Testability compliance.

The exclusion of BIT hardware from examination under
the rigorous eye of Testability not only exemplifies the
current inability of the discipline to express conclusions
in terms that demonstrate the effect of design changes
upon maintenance goals. It is also a perfect example
of what might be called the imaginary world approach
to Testability. This approach assumes that analyses
need not reflect the real world behavior of a system or
device under test because any improvement in
Testability will necessarily indicate a corresponding
improvement in Maintainability. However, as we have
already demonstrated (in the case where BIT hardware
is excluded from Testability analysis), the adoption of
imaginary worlds can actually conceal the relationship
between a design's inherent diagnostic capability and
its ability to be effectively maintained.

Common phrases that often betray the assumption of
an imaginary world include:

• operational hardware – implies an imaginary world
that excludes all hardware exclusively associated
with testing

• fault universe – implies an imaginary world in
which certain types of failures are excluded from
diagnostic coverage

• detected failures – implies an imaginary world in
which faults that are not immediately observable
will never need to be repaired

• single-point failure – implies an imaginary world in
which no more than one component can be
malfunctioning as diagnostics are performed.

• probability-weighted – implies an imaginary world
in which the relative failure frequencies of different
components or functions remain constant over any
arbitrary interval of time

The adoption of imaginary worlds in order to reduce
the complexity of certain analysis tasks has been
sanctioned by tradition to the point where they are
often assumed even when not explicitly legislated.
Furthermore, each of these imaginary worlds has its
own legions of adherents who will argue tooth and nail
to maintain the legitimacy of their world and to insure
its acceptability as the basis for their analyses. What is
often forgotten is that most of these imaginary worlds
originated as a means to facilitate tasks that were too
complex to be performed on paper. With the nearly
universal adoption of computer-based engineering
tools, the computational complexities associated with
real (non-imaginary) world analyses are no longer cost
or time prohibitive. Yet the fact remains that many

Testability efforts continue to systematically reduce
their workload by the unquestioned adoption of one or
more of these imaginary worlds. Contracts are either
assumed to require or interpreted as permitting the
adoption of these imaginary worlds—even when this
contradicts with other provisions of the contract. When
a contract does explicitly call for the adoption of an
imaginary world, it is seldom called into question, for
many companies are all too ready to satisfy contract
requirements to the letter, even when doing so
conflicts with their actual intent.

It is precisely in order to reduce this risk that many new
contracts contain provisions that attempt to insure that
a fielded system or device can be as effectively
maintained as the contract requirements demand and
the development team’s predictions promise. For
example, many new contracts contain maintenance
warrantees. If diagnostic performance does not meet
spec, the developers will be held responsible. If, for
example, actual operational availability were to fall
short of the level specified within the contract, the
developer could be required to provide additional units
free of charge (this is an expensive mistake in the case
of a billion dollar ship or aircraft). Likewise, if a fielded
system fails to satisfy contracted requirements for a
certain maintenance or diagnostic measure—such as
the Mean Time to Repair (MTTR) or False Alarm
Rate—the developers would be obliged to correct the
problem at their own cost.

As an alternative to maintenance warrantees, some
projects ensure that maintenance goals are met—at
least in terms of cost—by including several years of
maintenance (at a fixed price) within the development
contract. The developer then has an interest in insuring
that the system or device can really be maintained as
advertised, since any failure to do so would have a
direct effect upon profit and loss.

Perhaps not surprisingly, this trend toward greater
accountability is not yet reflected in the metrics that
developers use to evaluate (i.e. predict) compliance
with contracted maintenance requirements. In order for
Reliability, Testability or Maintainability indicators to be
useful as predictions, they must be based upon
realistic assumptions. They must recognize that BIT
hardware can and does fail, that any type of failure can
occur and therefore must be able to be diagnosed, and
that more than one thing can be wrong with a system
as it is tested.

Furthermore, Testability, Reliability and Maintainability
assessments must also take into consideration the fact
that a device or system will fail differently over time—
the relative frequency of different failures may be

completely different during the first few years of
deployment than near the end of the system’s useful
life. Knowledge of how system maintenance statistics
will change over time may help the customer to make
informed decisions about how that system can be best
maintained throughout its lifetime. If maintenance data
gathered during the first two years of deployment were
to be better than the development estimates and those
numbers were then used to reallocate support budgets
and reduce the number of spare parts, then, as the
system matures, its availability could be severely
impacted. This can be avoided if the maintainer is
informed that the diagnostic behavior of the system will
change over time. Suppose, to give another example,
that the actual MTTR for a device during its first few
years of deployment were to be significantly higher
than the estimates provided during development. The
diagnostic capability of that design may then have to
be augmented (requiring further expenditure that would
have been unnecessary if development analyses were
to have predicted diagnostic behavior across multiple
phases of the device's useful life).

Current Testability metrics not only fail to account for
differences in behavior within different time intervals,
they actually assume infinite deployment (or, rather, an
arbitrary time interval that is large enough for the
relative frequencies of all failures to have approached
their respective means). Statistics calculated in this
manner are inherently skewed, since a large number of
the potential malfunctions that can be maintained in a
cost and time-effective manner may be highly unlikely
to occur during the product’s expected lifetime. This
problem is only exacerbated by the fact that the
component reliability numbers upon which current
Testability statistics are based are means—numbers
that by themselves are only useful for describing failure
frequencies across an arbitrarily large time interval.
Testability measures, as they are calculated today,
completely ignore the specific distributions into which
the failures fall for each particular component. When
metrics are calculated for a specific time interval,
consideration must be given not only to the mean time
between failures (MTBF) for each component, but also
the specific distributions into which that component's
failures fall.

FOUR CHALLENGES TO THE
TESTABILITY COMMUNITY

If Testability is to remain useful as a discipline, it must
evolve not only in order to overcome its own current
shortcomings (as they become apparent), but also so
that it remains applicable within shifting development
paradigms. In order to throw down the metaphorical
gauntlet before all those who might be concerned with

the future of the discipline—analysts, contractors,
customers, providers of Testability analysis tools, and
especially those working to standardize the metrics
employed throughout the discipline—we have codified
the problems discussed in the previous section into the
following four challenges:

Challenge #1: Testability metrics should be expressed
in terms directly related to maintenance goals, rather
than as abstract entities that constitute good practice.

Perhaps the Testability requirement that has been
included in the most contracts over the last few
decades has been the percentage of detected failures
that can be isolated to a single failed component.
Statistics used to satisfy this requirement have been
introduced under a variety of names. In two
government documents that have often been invoked
as guidelines for Testability assessment, this statistic is
called Fault Resolution (MIL-STD-2165) and Percent
Isolation to a Group of Replaceable Items (MIL-HDBK-
472). Within DSI’s own tools, these figures have been
referred to as Fault Isolation Levels (LogMod),
Ambiguity Group Isolation Probabilities (STAT), and
Fault Group Size Isolation Probabilities (eXpress).
These different metrics are equivalent, but not
identical. What is common to all of these statistical
measures is the quantification of Testability in terms of
an abstract entity—ambiguity or fault group size—
rather than in terms of specific maintenance
considerations.

When Testability is evaluated in terms unrelated to
those in which the maintenance goals for a system or
device have been defined, then the analysis is suspect
since it will be possible for Testability to vary inversely
with respect to Maintainability. It is imperative that the
enforcement of good Testability as a "rule of thumb"
not be counterproductive to the project's maintenance
and support goals.

Of course, when Testability analysis is applied in early
design phases of a project, it is not likely that the
maintenance data will be available in order to ensure
the meaningful link between Testability indicators and
defined maintenance goals. This does not in any way
challenge the need to establish this link. When these
metrics are calculated in the absence of meaningful
maintenance data, then intelligent defaults should be
used (every test takes the same amount of time to
perform, etc.), rather than resorting to abstractions that
are themselves equally meaningless without recourse
this same maintenance data. Testability analysis
should be thought of not as a one-time evaluation, but
rather as an iterative process that produces better
statistics as the initial defaults are replaced by more

accurate estimates. Some of the results that emerge
from these early analyses may be relatively conclusive
and the resulting recommendations can be acted upon
even though they are not based upon actual support
data. Other conclusions may be deferred until more
accurate data is available. This procedure should not
extend the scope of most analysis tasks—if Testability
analysis is performed in early stages of development, it
is likely that Testability is already being viewed as an
iterative task within the overall development process.

Challenge #2: Testability metrics should transparently
represent the tradeoffs between different maintenance
considerations.

One recurring trend in the assessment of inherent
Testability is the attempt to embody all Testability
information within a single metric or, as it is sometimes
called, Figure of Merit. If this metric is based on a
single diagnostic attribute, such as repair time, then it
risks being at cross-purposes with actual maintenance
goals, which often take into consideration multiple
criteria. If, on the other hand, a Testability Figure of
Merit (or TFOM) were to be a combination of different
considerations, it would become, in effect, a reduction
of potentially useful knowledge into an abstraction that
can no longer be immediately mapped to meaningful
characteristics of the design. One of the strengths that
distinguishes Testability from its sister disciplines (the
other “ilities”) is in the ease with which its conclusions
can be translated into specific recommendations to
improve the physical design or diagnostic strategy.
When results are incorporated into a single composite
TFOM, Testability loses this useful transparency and
risks transforming itself from a proactive engineering
discipline (one that can influence the development of
the design) into a purely reactive analytical discipline.

Another important advantage of expressing Testability
as a set of several easily compared metrics (rather
than a single combined metric) is that the different
tradeoffs that result from design and diagnostic
modifications can be easily evaluated. For example,
the introduction of additional BIT into a design may not
only reduce the MTTR (which is good), but also result
in a reduction in the system MTBF (which is not so
good). Rather than blindly suggesting that this BIT be
implemented because it improves Testability, the
analyst should be able to compare the advantages with
the disadvantages in order to arrive at a more
measured recommendation. Of course, this type of
tradeoff analysis is impossible if the real benefits and
penalties are not discernable—which leads us to our
next challenge.

Challenge #3: Testability metrics should be able to be
derived with sufficient accuracy that they can serve as
predictions.

Imaginary worlds beget imaginary recommendations.
Testability metrics that are based on anything other
than real-world scenarios can potentially obscure the
relationships between the inherent diagnostic capacity
of a system or device and the ability to achieve long-
term maintenance goals for that design.

For example, if Testability analysis were to be based
on single point failures (adopting an imaginary world in
which only one component can be malfunctioning as
the system is diagnosed), then the resulting metrics
would never indicate the maintenance implications that
would result when multiple malfunctions must indeed
be diagnosed. Combinations of multiple, simultaneous
malfunctions that mask a diagnostic strategy’s ability to
isolate unambiguously could result in time-consuming
diagnosis or exorbitant replacement costs. If this is not
taken into consideration when generating Testability
statistics, these statistics would have little predictive
value and could not be verified using data gathered
from the field.

The same holds true when analysis is restricted to a
subset of all possible failures—such as those which
can be automatically registered within the system
(detected failures), are not exclusively associated with
BIT (operational hardware), or result from a prescribed
type of failure mode (fault universe). The Testability
statistics that would result from these exclusions would
not reflect the inadequacies that are potentially
associated with isolating these other malfunctions—
endemic and perhaps even inevitable inadequacies
that may very well have prompted the exclusion of
these failures from analysis in the first place. If
responsible recommendations are to be made,
however, these diagnostic inadequacies must also be
incorporated into the evaluative metrics.

Imaginary worlds are not the only possible impediment
to the predictive accuracy of Testability metrics. These
predictions should take into consideration not only the
isolation sequence and resulting fault groups but also
knowledge about the way in which the system will be
maintained. Such considerations include, but are not
limited to, the types of maintenance to be employed
(preventative, scheduled, condition-based) and the
way in which each isolated fault group is to be repaired
(block replacement, serial/prioritized replacement, or
some combination of the two). Furthermore, predictive
Testability metrics should be based on realistic
estimates of the test and repair times and cost that will
be required to maintain the system.

Once again, it is unlikely that this information will all be
available when Testability is analyzed in early phases
of product development. As we have already indicated,
the solution to this dilemma is not to ignore the
potential impact of maintenance considerations upon
design Testability, but rather to employ intelligent
estimates that can then be replaced with more
accurate data as the process is iterated. By mandating
the use of this information when it is available (and
requiring the use of reasonable defaults when it is not),
maintenance-based Testability metrics will circumvent
the enabling conditions for what we earlier called
statistical hypocrisy.

Challenge #4: Testability metrics should be calculated
over specific (and perhaps multiple) time intervals.

In order for Testability to be meaningful in a predictive
capacity, metrics must be calculated not over infinite
time, but rather over meaningful intervals for the device
or system in question. If nothing else, the interval over
which these metrics are calculated should be restricted
to the useful lifetime of the system or device. This
allows analyses to properly take into account the fact
that certain failures may be highly unlikely during the
expected interval of deployment.

In addition to metrics that describe the maintenance
and support behavior (such as MTTR) over the
product's expected lifetime, it would also be helpful to
provide statistics that describe how maintenance might
change over time. It would be useful to know, for
example, whether or not a maintenance characteristic
(such as the MTTR) remains constant or whether it
vacillates during different stages of the device or
system's lifetime. This would be of particular interest if
the MTTR were to reach unacceptable levels at some
stage of product maturation (a new breed of contract
requirements might mandate that the Expected MTTR
cannot exceed a certain limit during the first twenty
years of deployment). Metrics that depict changes in
maintenance characteristics over time could also be
used by the maintainer to optimize the maintenance
plan so that it too changes over time. This will be
particularly helpful for determining budgets, allocating
resources and fixing bin levels for spare parts. These
metrics would also be useful in determining the impact
upon maintenance if a system or device were to
remain in deployment beyond its intended lifetime.

If we are to meet this challenge we must question one
of Testability's most deep-rooted practices—the use of
failure rates in probability-weighted Testability metrics.
Statistics in which the frequencies of failure are based
only on failure rates (or MTBF) must be calculated over
an arbitrarily long deployment. These measures are

unable to predict diagnostic performance within a
specific interval of time or show how diagnostic and
maintenance behavior changes over time. As we shall
see, to generate failure frequencies for multiple time
intervals, a diagnostic simulation should be employed
that uses not only the estimated means (MTBF), but
also the specific failure distributions—when known—
for each component.

PROPOSED METRICS AND TECHNIQUES

Acknowledging that Testability analysis is perhaps the
most effective way to improve the diagnostic capability
of a design during all development stages, we would
now like to propose some metrics and techniques that
specifically respond to the four challenges proffered in
the previous section.

First of all, it is important that Testability Statistics be
expressed in terms directly related to maintenance
goals (such as cost & time), rather than abstract rules
of “good practice” (such as reduction of ambiguity).
The challenge lies in the fact that most of the statistics
traditionally used in Testability Analysis are expressed
in varying units that are often not comparable to
contractual goals.

In the early 90’s, DSI International developed a
Testability metric called Isolation Effectiveness as a
way to compare different sets of Fault Isolation
statistics using a single value. The primary advantage
of this new statistic was that it expressed the
diagnostic capability of a system or device in terms of
deviation from a goal. The following formula represents
DSI's original Isolation Effectiveness metric:

where N = the number of ambiguity group sizes

Si = the ith ambiguity group size

Pi = The probability that a fault will be isolated
to an ambiguity group of size i

This metric measures how well a particular diagnostic
sequence can isolate to a single failed component (in
other words, how much fault isolation deviates from the
goal of isolating to an ambiguity group of size one).
Because this metric represents a ratio, the actual units
(dollars, hours, etc.) of the data from which the metric
is computed are removed. This means that we can

compare the Isolation Effectiveness of different
diagnostic scenarios and even completely different
designs for the purpose of considering alternatives.

Although, in its original form, Isolation Effectiveness is
not directly related to either maintenance or support
goals, this metric can be easily modified to express the
fault isolation capability of a given diagnostic sequence
with respect to any type of data. The following formula,
then, gives the general form of this metric:

where ∆i = the distance from goal x associated with
the diagnosis and/or replacement of the ith
ambiguity group

Vi = the computed value for ambiguity group i
that is to be compared with goal x

Pi = the percentage, either actual or predicted,
of isolations to ambiguity group i

N = the total number of ambiguity groups

This formula differs from the first one primarily in that
the expression (SI – 1) has been replaced by the
variable ∆i. The key to this metric is to characterize
diagnostic performance as the computed difference
(delta) between the individual attribute values and the
maintenance goal that corresponds to those attributes.
This modification now allows us to compute Isolation
Effectiveness for any single design characteristic. To
see this, let's compute Isolation Effectiveness with
respect to Repair Time. For this example, we will be
calculating how closely maintenance will meet a 1-hour
turn-around time. Here are the Repair Times (Vi) and
Relative Failure Probabilities (Pi) for each of the three
ambiguity groups that can be isolated for this design:

AG #1: V1=90 minutes, P1=10%
AG #2: V2=50 minutes, P2=30%
AG #3: V3=60 minutes, P3=60%

Therefore,

IERepair Time <= 60 = 1 – [0.1*(90-60) + 0.3*(0) +
0.6*(0)] / [0.1*90 + 0.3*50 +
0.6*60]

= 1 – (3 / 60)

= 0.95

∑

∑

=

=

−
−= N

i
ii

N

i
ii

SP

SP
IE

1

1

)1(
1

i

N

i
i

i

N

i
i

x

VP

P
IE

∑

∑

=

=

∆
−=

1

11

In this case, the calculated Isolation Effectiveness with
respect to Repair Time is 0.95. This design could
therefore be said to be 95% effective at isolating to
ambiguity groups whose Repair Time is less than or
equal to 60 minutes. Notice that an IE of 1.0
represents full compliance, and that for those repair
actions that could be performed under the goal of one
hour, delta is set to 0. By doing so, we are ensuring
that we do not take an arbitrary benefit for those repair
actions that exceed the goal. While this may at first
seem to be harsh, it alleviates the misleading behavior
of an MTTR when the deviation is great. For example,
three repair actions of 1 minute, 1 minute, and 3 hours
can produce an MTTR that appears to be compliant,
yet fails miserably to meet contract goals stating no
repair action longer than 1 hour.

There are of course some considerations when
applying this formula to other metrics. For example,
should the goal not be reduction but rather an
increase, as would be the case for availability and
reliability, it is important that the delta be computed by
subtracting in the opposite order. Provided that the
delta is always positive, this equation can be used with
any diagnostic attribute to create an appropriate
measure for Testability, Reliability or Maintainability.

The key to the acceptance of this metric, we believe, is
in an attractive presentation to the customer. If new
statistics demonstrate more accuracy or more insight
into the design, customers are likely to include
requirements using these types of calculations in future
contracts. While many vendors (analysts) may wish to
argue that they do not need any more requirements
than those presently used in most contracts, there are
numerous benefits even for the vendor. The following
graphs demonstrate how Testability can use Isolation
Effectiveness to recommend improvements. Although
each of these graphs was generated using the same
model, the actual numbers here are less important
than the concepts and how the results of this metric
might be applied.

First of all, we'll compute repair time and cost so that
we can determine our level of compliance. In this case,
we are required to have all faults repaired in 30
minutes or less at a cost of no more than $250.

Fault Probability Time to Repair
(minutes)

Delta

0.2188 71 41
0.2878 59 29
0.0504 83 53
0.0504 43 13
0.0504 57 27
0.1691 60 30
0.0621 64 34
0.0490 76 46
0.0490 16 0
0.0087 36 6
0.0043 31 1

IERepair Time <= 30 = 0.48

Notice that, although only one ambiguity group meets
the goal of being repaired within 30 minutes, we have
nevertheless 0.48 compliance with this requirement.
This demonstrates the qualitative ability of this metric
as a measure of progress towards a goal. If the Time
to Repair for the first ambiguity group were reduced
from 71 to 36, (a number that still does not meet the
30-minute goal), the Isolation Effectiveness would
improve to 0.55—even though the percentage of
compliant ambiguity groups has not changed.

Fault Probability Cost to Repair Delta

0.2188 149 0
0.2878 905 655
0.0504 106 0
0.0504 110 0
0.0504 127 0
0.1691 30 0
0.0621 212 0
0.0490 71 0
0.0490 194 0
0.0087 49 0
0.0043 31 0

IERepair Cost <= $250 = 0.45

All but one of the isolated ambiguity groups meet the
goal of a Repair Cost less than 250 dollars. The poor
Isolation Effectiveness results from the single, highly-
probable isolation that costs $905 to repair. This again
demonstrates this metric's ability to quantify progress
towards a goal. If we were to reduce the Repair Cost
for the second ambiguity group to $305 (only $55 more
than the goal), the IE would rise to 0.91. Now, instead
of changing the Cost to Repair (it will remain at $905)
let's reduce the Fault Probability for that group (to keep
the calculation neat, let's simply swap probabilities with
the third group so that the second ambiguity group is
now isolated only 5% of the time). The new IE would
be 0.78, since our seriously out-of-spec ambiguity
group would be isolated less frequently.

Using our original values, here is a graph that depicts
two Isolation Effectiveness metrics—one calculated
with respect to Repair Time and the other with respect
to Repair Cost:

While this is valuable information, it does not provide
us with a direction to pursue in order to meet our goals.
We must break the two repair calculations into their
constituent parts:

RepairTime = IsolationTime + ReplacementTime

RepairCost = IsolationCost + ReplacementCost

If we calculate separate Isolation Effectiveness metrics
for Isolation Cost and Time, as well as Replacement

Cost and Time, we can include them (along with our
Repair Cost and Time metrics) in a single graph. This
graph now shows us what has caused Isolation
Effectiveness with respect to Cost and Time to Repair
to be out of compliance.

From this graph, it is clear that poor Replacement
Time and Costs are what are preventing Repair Time
and Cost from meeting their respective goals. This
clearly demonstrates the importance of not overly
reducing statistics into an overall figure, especially for
purposes of Testability and design recommendations.

This example also demonstrates the advantage that
the Isolation Effectiveness metric offers over expected
values and sample means (such as MTTR). Because
Isolation Effectiveness is ultimately a measure of
compliance, it produces values within the same range
(between 0 and 1), regardless of the attribute on which
it is based. This is what allows us to look at the first
two columns of this graph and immediately notice that
the Time to Isolate is significantly more compliant than
is Replacement Time.

The final step (one that allows our Testability analysis
to suggest where we can improve the design’s
diagnostic capacity) is to enumerate one step further
and display effectiveness on a per-fault group basis.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Repair Time Repair Cost

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Isolate Time Replace Time Repair Time Isolate Cost Replace Cost Repair Cost

The following graph depicts Isolation Effectiveness
with respect to Replacement Time.

The usefulness of this graph is immediately apparent.
The most problematic ambiguity groups are AG3 and
AG8 and we can see their relative impact on Isolation
Effectiveness versus the other ambiguity groups. That
is, AG2 is approximately twice as compliant as AG3,
AG4 twice AG1, etc. Using this technique one can
begin to quantify exactly how much benefit can be
achieved and how to go about achieving it.

We could even go further by displaying the least
compliant fault group in terms of its constituent items—
and once again to show its constituent functions. While
all of this may be important to the Testability engineer
in increasing overall design compliance, it should not
be overlooked that the same calculation that was used
to calculate the low-level recommendations was also
used to obtain the high-level compliance statistics that
might be expected in contractual requirements. This
allows the Testability engineer to make specific
recommendations that lead toward compliance with a
goal expressed in terms of maintenance data.

Now that we have seen how Isolation Effectiveness
can be applied across any range of statistics, we would
like to introduce a new concept that further refines this
calculation. Specifically, we will be discussing how to
calculate our same effectiveness statistic over specific
intervals of time.

So far, all statistics provided have been computed over
the entire set of ambiguity groups, which are each
probability-weighted. Although these statistics provide
valuable information, they are often overused as an
indication of what one can expect from the system on a
year-to-year basis. The inherent flaw in this logic is that
these statistics are based on infinite time—that is, the
ambiguity groups sizes, repair costs, etc. have all
converged on an expected value. When this is then

used for budgeting, however, it is possible that the cost
or time allocated could be grossly wrong.

To accurately calculate effectiveness or expected
values (MTTR, for example) over time, it is vital that a
simulation engine be used. The power of a simulation
engine is in its ability, over a large number of simulated
lifetimes, to accurately produce only those failures that
would occur in the field during the time interval in
question. Failures that occur earlier in the system’s life
will bias the statistics accordingly. If run long enough,
the simulation’s expected values will converge on the
expected values that were computed directly using the
failure rates from the different ambiguity groups.

While the full details of a simulation engine are beyond
the scope of this paper, here are a few of the features
and restrictions associated with the simulation engine
that we used to calculate the upcoming statistics:

• Some components have been modeled with
exponential failure distributions, while others
use a standard normal distribution. At the heart
of any simulation engine of this type is a
random number generator that produces faults
in accordance with the component reliability
and a failure distribution curve. Our simulation
is somewhat advanced in its ability to use
mixed types of distribution curves.

• Faults are instantaneously detected, thereby
eliminating almost any possibility of multiple
failures during isolation.

• The system is assumed to be taken offline
while testing and repair is performed. In other
words, new failures are not allowed to occur,
nor do parts age during maintenance.

• When a fault is isolated, the entire ambiguity
group is replaced with new parts.

Before we proceed, it is important that we respond to
the argument that changes in maintenance philosophy
(such as using serial replacement instead of block
replacement) will eliminate many of the effects that we
are about to demonstrate. This argument is short-
sighted if it leads to the belief that a simulation engine
is not required in these cases. In researching the
statistics shown here, we have found that extremely
subtle changes can have dramatic and sometimes
unexpected results. The only way to accurately predict
the system behavior is using a time-based simulation.

Before we look at the simulation results, let's look at
the predictions generated using standard (traditional)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

AG 1 AG 2 AG 3 AG 4 AG 5 AG 6 AG 7 AG 8 AG 9 AG 10 AG 11

Testability metrics. We can expect any simulation to
converge on these numbers since they represent the
expected values at near-infinite time. In fact, running a
simulation can help confirm whether the system being
tested converges fast enough to be accepted as
meeting the goals. Obviously a system that takes 30
years to converge is likely to be questioned when the
support costs are nowhere near the goals for the first
5-10 years. In such cases, customers may require a
redesign in order for the system to meet contracted
maintenance requirements. Here are Testability and
Maintainability numbers computed using failure rates
(means) to represent relative frequencies of failure:

AG Isolation Effectiveness: 0.17
Expected AG Size: 5.87

Expected Cost to Isolate (MCTI): $8.66
Expected Cost to Replace: $388.29
Expected Cost to Repair (MCTR): $396.94

Expected Time to Isolate (MTTI): 37 minutes
Expected Time to Replace: 178 minutes
Expected Time to Repair (MTTR): 215 minutes

Next, lets analyze several of the simulation statistics
(each over a ten year time span) in comparison to
these projections. First up is Isolation Effectiveness
with respect to ambiguity group size (the goal being
isolation to a group size of 1).

This graph indicates that, during the first few years, we
are able to isolate to a single component more
effectively than in later years. The metric converges
rapidly to our mean, however. Our next graph confirms
this in terms of the expected AG size. Note how it
converges to our original (traditional) calculation of
5.87.

What is interesting about this particular system is that
our new technique, if used in this limited way, would
say that this system is fantastic. During the first few
years, it is actually easier to isolate to smaller groups,
whereas future years simply approach what was
originally predicted—better performance than even
traditional Testability statistics would imply.

Unfortunately, if for this system we were to assess
Testability solely in terms of isolated ambiguity group
sizes, we would be sadly misled about the system's
diagnostic capability. The following graph depicts the
Isolation Effectiveness with respect to Repair Cost for
this same system.

Keep in mind that not reaching an effectiveness of 1.0
doesn’t mean we haven’t met contract goals that only
call for an expected repair cost. Isolation Effectiveness
is more sensitive in that it indicates when any single
repair action has not met the specification.

Notice that the Isolation Effectiveness with respect to
Repair Cost is significantly lower in the first couple
years, and converges by about the fourth year. Our

goal was $400, and the cost of testing was not a
significant amount of the repair cost.

Our next graph shows Repair Cost in dollars, and we
can actually see that although Isolation Effectiveness
converged in a few years, the Expected Repair Cost
takes several decades to converge to our original
calculation. In fact, the Expected Repair Cost is has
only reduced to $401 at the 30-year mark—a clear
indication of just how long a time frame the standard
testability statistics are based on. With this kind of
difference, almost any customer would question the
accuracy of the original testability predictions.

What is particularly disturbing for anyone who is
unaware of this trend, is that using the Mean Cost to
Repair (MCTR) of $396.94 to derive a yearly per-unit
support cost, could easily use up the entire year’s
budget in the first few months of deployment. In fact,
this system will be severely under-budgeted for at least
the 5-10 years! Since the exact over-budget amount
depends on how many units are fielded, the next table
shows the per-unit cost which used in this analysis:

Year of
Deployment

Expected
Repair Cost ($)

1 894.17
2 576.26
3 446.74
4 437.92
5 426.63
6 417.64
7 418.05
8 416.09
9 412.34
10 411.44

Now, If we were to have 1,000 units with a budget of
roughly $396 per unit (the traditional Testability
prediction), we would have a severe budgeting crisis
during the first decade of deployment. The following

table shows precisely how much over budget we would
be during the first ten years:

Year of
Deployment

Total Amount
Over Budget ($)

1 497K
2 677K
3 726K
4 767K
5 797K
6 817K
7 838K
8 857K
9 873K
10 888K

Thus, despite dropping to within $40 of our original
prediction in the first four years, our 1,000 units are
nearly $1 million over-budget by the tenth year!

One of the most interesting things learned from
simulation is that there are very often small deviations
even after the numbers have apparently converged.
For instance, in the first table, year 7 has a higher
support cost than year 6. While it is small, this could
represent a significant change in what components are
failing. A different system might not have a much more
substantial change towards higher cost, but might
require a far more sophisticated sparing strategy to
account for the different faults encountered during this
year. What we have determined, is that one really
never knows what effect a subtle difference might
produce until a full simulation has been run. Some of
the most dramatic changes in numbers can arise from
the smallest of changes. Increasing the cost by only a
couple of percent for components which factor heavily
in the final statistics can easily mean the difference of
compliance or not.

CONCLUSIONS

This paper has attempted to expose and address
several severe problems with the statistical methods
currently employed by Testability and Maintainability
analyses. We hope that we have also demonstrated
that the benefits of simulation-based metrics need not
be confined to development analyses. This could be
the start of a new era in diagnostic development—one
in which model-based diagnostic analysis, because it
can accurately predict support costs, times and even
spares on a year-by-year basis, can become an
essential input to year-by-year allocation procedures,
replacing decade-old predictions based on "best-
guess" reliability means.

If, at the very least, the Testability metrics described in
this paper were to be computed for the first 20 years of
a system or device's useful life, these predictions
would be more useful than current measures for
determining sparing and costing strategies. Whereas
traditional Testability statistics help us formulate long-
term expectations, they are far less meaningful when
used to establish specific maintenance procedures and
budgets.

Finally, it must be remembered that, when contract
conformance is measured using standard Testability
techniques and metrics, these calculations statistically
include many failures that are not likely to occur during
the expected lifetime of the system or device in
question. Furthermore, because these assessments
are expressed in terms of isolated ambiguity group
sizes, the relationship between Testability and
Maintainability is, at best, ambiguous. If Testability is to
fulfill its promise and become an essential and
unequivocal development practice, the entire
development community must respond to the
challenges presented within this paper. We hope that
the metrics and techniques that we have proposed
provide a good starting point for discussions about the
future of Testability as a discipline.

